版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省德化一中、永安一中、漳平一中2023年高二上數(shù)學(xué)期末監(jiān)測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列滿足,則滿足的的最大取值為()A.6 B.7C.8 D.92.已知銳角的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若向量,,,則的最小值為()A. B.C. D.3.已知函數(shù)的圖象在點(diǎn)處的切線與直線平行,若數(shù)列的前項(xiàng)和為,則的值為()A. B.C. D.4.已知數(shù)列為等比數(shù)列,則“為常數(shù)列”是“成等差數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件5.函數(shù)的圖象如圖所示,是f(x)的導(dǎo)函數(shù),則下列數(shù)值排序正確的是()A B.C. D.6.已知向量,則下列結(jié)論正確的是()A.B.C.D.7.若將雙曲線繞其對(duì)稱中心順時(shí)針旋轉(zhuǎn)120°后可得到某一函數(shù)的圖象,且該函數(shù)在區(qū)間上存在最小值,則雙曲線C的離心率為()A. B.C.2 D.8.已知兩條異面直線的方向向量分別是,,則這兩條異面直線所成的角滿足()A. B.C. D.9.已知兩個(gè)向量,若,則的值為()A. B.C.2 D.810.執(zhí)行如圖所示的程序框圖,輸出的s值為()A.8 B.9C.27 D.3611.命題,,則為()A., B.,C., D.,12.已知空間向量,,,下列命題中正確的個(gè)數(shù)是()①若與共線,與共線,則與共線;②若,,非零且共面,則它們所在的直線共面;⑧若,,不共面,那么對(duì)任意一個(gè)空間向量,存在唯一有序?qū)崝?shù)組,使得;④若,不共線,向量,則可以構(gòu)成空間的一個(gè)基底.A.0 B.1C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.以點(diǎn)為圓心,且與直線相切的圓的方程是____________14.設(shè),則_________15.某工廠年前加緊手套生產(chǎn),設(shè)該工廠連續(xù)5天生產(chǎn)的手套數(shù)依次為,,,,(單位:萬(wàn)只),若這組數(shù)據(jù),,,,的方差為4,且,,,,的平均數(shù)為8,則該工廠這5天平均每天生產(chǎn)手套______萬(wàn)只16.等差數(shù)列前3項(xiàng)的和為30,前6項(xiàng)的和為100,則它的前9項(xiàng)的和為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某小學(xué)調(diào)查學(xué)生跳繩的情況,在五年級(jí)隨機(jī)抽取了100名學(xué)生進(jìn)行測(cè)試,得到頻率分布直方圖如下,且規(guī)定積分規(guī)則如下表:每分鐘跳繩個(gè)數(shù)得分17181920(1)求頻率分布直方圖中,跳繩個(gè)數(shù)在區(qū)間的小矩形的高;(2)依據(jù)頻率分布直方圖,把第40百分位數(shù)劃為合格線,低于合格分?jǐn)?shù)線的學(xué)生需補(bǔ)考,試確定本次測(cè)試的合格分?jǐn)?shù)線;(3)依據(jù)積分規(guī)則,求100名學(xué)生的平均得分.18.(12分)已知橢圓經(jīng)過點(diǎn),橢圓E的一個(gè)焦點(diǎn)為.(1)求橢圓E的方程;(2)若直線l過點(diǎn)且與橢圓E交于兩點(diǎn).求的最大值.19.(12分)某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖(1)求直方圖中的值;(2)求月平均用電量的眾數(shù)和中位數(shù);(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?20.(12分)如圖,三棱柱的所有棱長(zhǎng)都是,平面,為的中點(diǎn),為的中點(diǎn)(1)證明:直線平面;(2)求平面與平面夾角的余弦值21.(12分)已知橢圓的一個(gè)頂點(diǎn)為,離心率為(1)求橢圓C的方程;(2)若直線l與橢圓C交于M、N兩點(diǎn),直線BM與直線BN的斜率之積為,證明直線l過定點(diǎn)并求出該定點(diǎn)坐標(biāo)22.(10分)已知等差數(shù)列的前n項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式及;(2)設(shè),求數(shù)列的前n項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】首先地推公式變形,得,,求得數(shù)列的通項(xiàng)公式后,再解不等式.【詳解】因?yàn)?,兩邊取倒?shù),得,整理為:,,所以數(shù)列是首項(xiàng)為1,公差為4的等差數(shù)列,,,因?yàn)?,即,得,解得:?所以的最大值是7.故選:B2、C【解析】由,得到,根據(jù)正弦、余弦定理定理化簡(jiǎn)得到,化簡(jiǎn)得到,再結(jié)合基本不等式,即可求解.【詳解】由題意,向量,,因?yàn)?,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因?yàn)椋?,由,所以,因?yàn)槭卿J角三角形,且,可得,解得,所以,所以,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,故的最小值為.故選:C3、A【解析】函數(shù)的圖象在點(diǎn)處的切線與直線平行,利用導(dǎo)函數(shù)的幾何含義可以求出,轉(zhuǎn)化求解數(shù)列的通項(xiàng)公式,進(jìn)而由數(shù)列的通項(xiàng)公式,利用裂項(xiàng)相消法求和即可【詳解】解:∵函數(shù)的圖象在點(diǎn)處的切線與直線平行,由求導(dǎo)得:,由導(dǎo)函數(shù)得幾何含義得:,可得,∴,所以,∴數(shù)列的通項(xiàng)為,所以數(shù)列的前項(xiàng)的和即為,則利用裂項(xiàng)相消法可以得到:所以數(shù)列的前2021項(xiàng)的和為:.故選:A.4、C【解析】先考慮充分性,再考慮必要性即得解.【詳解】解:如果為常數(shù)列,則成等差數(shù)列,所以“為常數(shù)列”是“成等差數(shù)列”的充分條件;等差數(shù)列,所以,所以數(shù)列為,所以數(shù)列是常數(shù)列,所以“為常數(shù)列”是“成等差數(shù)列”的必要條件.所以“為常數(shù)列”是“成等差數(shù)列”的充要條件.故選:C5、A【解析】結(jié)合導(dǎo)數(shù)的幾何意義確定正確選項(xiàng).【詳解】,表示兩點(diǎn)連線斜率,表示在處切線的斜率;表示在處切線的斜率;根據(jù)圖象可知,.故選:A6、D【解析】由題可知:,,,故選;D7、C【解析】由題意,可知雙曲線的一條漸近線的傾斜角為120°,再確定參數(shù)的正負(fù)即可求解.【詳解】雙曲線,令,則,顯然,則一條漸近線方程為,繞其對(duì)稱中心順時(shí)針旋轉(zhuǎn)120°后可得到某一函數(shù)的圖象,則漸近線就需要旋轉(zhuǎn)到與坐標(biāo)軸重合,故漸近線方程的傾斜角為120°,即,該函數(shù)在區(qū)間上存在最小值,可知,所以,所以.故選:C8、D【解析】利用向量夾角余弦公式直接求解【詳解】解:兩條異面直線的方向向量分別是,,這兩條異面直線所成的角滿足:,,故選:D9、B【解析】直接利用空間向量垂直的坐標(biāo)運(yùn)算計(jì)算即可.【詳解】因?yàn)?,所以,即,解?故選:B10、B【解析】執(zhí)行程序框圖,第一次循環(huán),,滿足;第二次循環(huán),,滿足;第三次循環(huán),,不滿足,輸出,故選B.【方法點(diǎn)睛】本題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時(shí)一定注意以下幾點(diǎn):(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時(shí)一定要正確控制循環(huán)次數(shù);(5)要注意各個(gè)框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運(yùn)算方法逐次計(jì)算,直到達(dá)到輸出條件即可.11、B【解析】直接利用特稱命題的否定是全稱命題寫出結(jié)果即可.【詳解】命題,為特稱命題,而特稱命題的否定是全稱命題,所以命題,,則為:,.故選:B12、B【解析】用向量共線或共面的基本定理即可判斷.【詳解】若與,與共線,,則不能判定,故①錯(cuò)誤;若非零向量共面,則向量可以在一個(gè)與組成的平面平行的平面上,故②錯(cuò)誤;不共面,意味著它們都是非零向量,可以作為一組基底,故③正確;,∴與共面,故不能組成一個(gè)基底,故④錯(cuò)誤;故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)直線與圓相切,圓心到直線距離等于半徑,由點(diǎn)到直線的距離公式求出半徑,然后可得.【詳解】圓心到直線的距離,又圓與直線相切,所以,所以圓的方程為.故答案為:14、【解析】求出函數(shù)的導(dǎo)數(shù),再令,即可得出答案.【詳解】解:由,得,所以.故答案為:.15、2【解析】結(jié)合方差、平均數(shù)的公式列方程,化簡(jiǎn)求得正確答案.【詳解】依題意設(shè),則,.故答案為:16、210【解析】依題意,、、成等差數(shù)列,從而可求得答案【詳解】∵等差數(shù)列{an}的前3項(xiàng)和為30,前6項(xiàng)和為100,即S3=30,S6=100,又S3、S6﹣S3、S9﹣S6成等差數(shù)列,∴2(S6﹣S3)=(S9﹣S6)+S3,即140=S9﹣100+30,解得S9=210.故答案:210【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),熟練利用、、成等差數(shù)列是關(guān)鍵,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)分【解析】(1)根據(jù)頻率之和為列方程來(lái)求得跳繩個(gè)數(shù)在區(qū)間的小矩形的高.(2)根據(jù)百分位數(shù)的計(jì)算方法計(jì)算出合格分?jǐn)?shù)線.(3)根據(jù)平均數(shù)的求法求得名學(xué)生的平均得分.【小問1詳解】設(shè)跳繩個(gè)數(shù)在區(qū)間的小矩形的高為,則,解得.【小問2詳解】第一組的頻率為,第二組的頻率為,第三組的頻率為,第四組的頻率為,第五組的頻率為,第六組的頻率為,所以第百分位數(shù)為.也即合格分?jǐn)?shù)線為.【小問3詳解】名學(xué)生的平均得分為分.18、(1)(2)【解析】(1)設(shè)橢圓的左,右焦點(diǎn)分別為,.利用橢圓的定義求出,然后求解,得到橢圓方程;(2)當(dāng)直線的斜率存在時(shí),設(shè),,,,,聯(lián)立直線與橢圓方程,利用韋達(dá)定理以及弦長(zhǎng)公式得到弦長(zhǎng)的表達(dá)式,再通過換元利用二次函數(shù)的性質(zhì)求解最值即可【小問1詳解】依題意,設(shè)橢圓的左,右焦點(diǎn)分別為,則,,,,橢圓的方程為【小問2詳解】當(dāng)直線的斜率存在時(shí),設(shè),,,,由得由得由,得設(shè),則,當(dāng)直線的斜率不存在時(shí),,的最大值為19、(1);(2),;(3)【解析】(1)由直方圖的性質(zhì)可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方圖中眾數(shù)為最高矩形上端的中點(diǎn)可得,可得中位數(shù)在[220,240)內(nèi),設(shè)中位數(shù)為a,解方程(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5可得;(3)可得各段的用戶分別為25,15,10,5,可得抽取比例,可得要抽取的戶數(shù)試題解析:(1)由直方圖的性質(zhì)可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1得:x=0.0075,所以直方圖中x的值是0.0075.-------------3分(2)月平均用電量的眾數(shù)是=230.-------------5分因?yàn)?0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用電量的中位數(shù)在[220,240)內(nèi),設(shè)中位數(shù)為a,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5得:a=224,所以月平均用電量的中位數(shù)是224.------------8分(3)月平均用電量為[220,240)的用戶有0.0125×20×100=25戶,月平均用電量為[240,260)的用戶有0.0075×20×100=15戶,月平均用電量為[260,280)的用戶有0.005×20×100=10戶,月平均用電量為[280,300]的用戶有0.0025×20×100=5戶,-------------10分抽取比例==,所以月平均用電量在[220,240)的用戶中應(yīng)抽取25×=5戶.--12分考點(diǎn):頻率分布直方圖及分層抽樣20、(1)證明見解析(2)【解析】(1)取的中點(diǎn),連接交于,連接,,由平面幾何得,再根據(jù)線面平行的判定可得證;(2)建立如圖所示的空間直角坐標(biāo)系,利用向量法即可得結(jié)果.【小問1詳解】取的中點(diǎn),連接交于,連接,在三棱柱中,為的中點(diǎn),,為的中點(diǎn),且,且,四邊形為平行四邊形,又平面,平面,平面;【小問2詳解】平面,,平面,,,兩兩垂直,以為原點(diǎn),,,所在直線分別為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系,則,,,,設(shè)平面的法向量為,則即取,則,,又是平面的一個(gè)法向量,,故平面和平面夾角的余弦值為21、(1);(2)答案見解析,直線過定點(diǎn).【解析】(1)首先根據(jù)頂點(diǎn)為得到,再根據(jù)離心率為得到,從而得到橢圓C的方程.(2)設(shè),,,與橢圓聯(lián)立得到,利用直線BM與直線BN的斜率之積為和根系關(guān)系得到,從而得到直線恒過的定點(diǎn).【詳解】(1)一個(gè)頂點(diǎn)為,故,又,即,所以故橢圓的方程為(2)若直線l的斜率不存在,設(shè),,此時(shí),與題設(shè)矛盾,故直線l斜率必存在設(shè),,,聯(lián)立得,∴,∵,即∴,化
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年蓄水池施工勞務(wù)合同范本
- 廢紙采購(gòu)合同2024年
- 工業(yè)商品交易合同范例
- 房屋買賣合同協(xié)議書撰寫指南
- 2024年門衛(wèi)值班人員聘用合同協(xié)議
- 個(gè)人借款延期還款協(xié)議書范例
- 工廠土地轉(zhuǎn)讓合同樣本
- 產(chǎn)品加工項(xiàng)目合作協(xié)議書范本
- 2024年勞務(wù)合同與勞務(wù)協(xié)議書
- 合同范本編寫指南
- 肥胖癥診療指南(2024年版)
- 《高血壓科普知識(shí)》課件
- 等級(jí)評(píng)審護(hù)理匯報(bào)
- 《建筑工程設(shè)計(jì)文件編制深度規(guī)定》(2022年版)
- 心理咨詢中知情同意的倫理困境與解決途徑
- MapGIS國(guó)土資源云平臺(tái)解決方案
- 新疆歷史印記課件
- 《第二單元 多彩的音樂風(fēng)格學(xué)習(xí)項(xiàng)目一 中國(guó)音樂萬(wàn)花筒-苗族民歌與彝族民歌》教案七年級(jí)上冊(cè)人教版(新版2024)
- 離職證明(標(biāo)準(zhǔn)模版)
- 內(nèi)部項(xiàng)目跟投協(xié)議書模板
- 行政復(fù)議法-形考作業(yè)3-國(guó)開(ZJ)-參考資料
評(píng)論
0/150
提交評(píng)論