版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆浙江省環(huán)大羅山聯(lián)盟高二上數(shù)學期末達標檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數(shù)列滿足,對任意,都有,則()A. B.C. D.2.如圖,在三棱錐中,,二面角的正弦值是,則三棱錐外接球的表面積是()A. B.C. D.3.已知橢圓的一個焦點坐標為,則的值為()A.1 B.3C.9 D.814.高中生在假期參加志愿者活動,既能服務社會又能鍛煉能力.某同學計劃在福利院、社區(qū)、圖書館和醫(yī)院中任選兩個單位參加志愿者活動,則參加圖書館活動的概率為()A. B.C. D.5.已知的二項展開式的各項系數(shù)和為32,則二項展開式中的系數(shù)為A5 B.10C.20 D.406.已知為等差數(shù)列,為其前n項和,,則下列和與公差無關的是()A. B.C. D.7.已知點是拋物線的焦點,點為拋物線上的任意一點,為平面上點,則的最小值為A.3 B.2C.4 D.8.已知x>0、y>0,且1,若恒成立,則實數(shù)m的取值范圍為()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)9.已知圓M的圓心在直線上,且點,在M上,則M的方程為()A. B.C. D.10.已知數(shù)列是各項均為正數(shù)的等比數(shù)列,若,則公比()A. B.2C.2或 D.411.據(jù)有關文獻記載:我國古代一座層塔共掛了盞燈,且相鄰兩層中的下一層燈數(shù)比上一層燈數(shù)都多為常數(shù)盞,底層的燈數(shù)是頂層的倍,則塔的底層共有燈()A.盞 B.盞C.盞 D.盞12.已知數(shù)列中,其前項和為,且滿足,數(shù)列的前項和為,若對恒成立,則實數(shù)的值可以是()A. B.2C.3 D.二、填空題:本題共4小題,每小題5分,共20分。13.等比數(shù)列的各項均為正數(shù),且,則__________.14.設有下列命題:①當,時,不等式恒成立;②函數(shù)在上的最小值為2;③函數(shù)在上的最大值為;④若,,且,則的最小值為其中真命題為________________.(填寫所有真命題的序號)15.已知等差數(shù)列的前n項和為公差為d,且滿足則的取值范圍是_____________,的取值范圍是_____________16.若直線l經(jīng)過A(2,1),B(1,)兩點,則l的斜率取值范圍為_________________;其傾斜角的取值范圍為_________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓)過點A(0,),且與雙曲線有相同的焦點(1)求橢圓C的方程;(2)設M,N是橢圓C上異于A的兩點,且滿足,試判斷直線MN是否過定點,并說明理由18.(12分)已知橢圓C:()的離心率為,并且經(jīng)過點,(1)求橢圓C的方程;(2)設點關于坐標原點的對稱點為,點為橢圓C上任意一點,直線的斜率分別為,,求證:為定值19.(12分)已知拋物線上的點P(3,c)),到焦點F的距離為6(1)求拋物線C的方程;(2)過點Q(2,1)和焦點F作直線l交拋物線C于A,B兩點,求△PAB的面積20.(12分)已知命題:對任意實數(shù)都有恒成立;命題:關于的方程有實數(shù)根(1)若命題為假命題,求實數(shù)的取值范圍;(2)如果“”為真命題,且“”為假命題,求實數(shù)的取值范圍21.(12分)曲線的左、右焦點分別為,左、右頂點分別為,C上的點M滿足,且直線的斜率之積等于(1)求C的方程;(2)過點的直線l交C于A,B兩點,若,其中,證明:22.(10分)已知圓:和圓外一點,過點作圓的切線,切線長為.(1)求圓的標準方程;(2)若圓:,求證:圓和圓相交,并求出兩圓的公共弦長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】首先根據(jù)題設條件可得,然后利用累加法可得,所以,最后利用裂項相消法求和即可.【詳解】由,得,則,所以,.故選:C.【點睛】本題考查累加法求數(shù)列通項,考查利用錯位相減法求數(shù)列的前n項和,考查邏輯思維能力和計算能力,屬于??碱}.2、A【解析】利用二面角S﹣AC﹣B的余弦值求得,由此判斷出,且兩兩垂直,由此將三棱錐補形成正方體,利用正方體的外接球半徑,求得外接球的表面積.【詳解】設是的中點,連接,由于,所以,所以是二面角的平面角,所以.在三角形中,,在三角形中,,在三角形中,由余弦定理得:,所以,由于,所以兩兩垂直.由此將三棱錐補形成正方體如下圖所示,正方體的邊長為2,則體對角線長為.設正方體外接球的半徑為,則,所以外接球的表面積為,故選:.3、A【解析】根據(jù)條件,利用橢圓標準方程中長半軸長a,短半軸長b,半焦距c關系列式計算即得.【詳解】由橢圓的一個焦點坐標為,則半焦距c=2,于是得,解得,所以值為1.故選:A4、D【解析】對4個單位分別編號,利用列舉法求出概率作答.【詳解】記福利院、社區(qū)、圖書館和醫(yī)院分別為A,B,C,D,從4個單位中任選兩個的試驗有AB,AC,AD,BC,BD,CD,共6個基本事件,它們等可能,其中有參加圖書館活動的事件有AC,BC,CD,共3個基本事件,所以參加圖書館活動的概率.故選:D5、B【解析】首先根據(jù)二項展開式的各項系數(shù)和,求得,再根據(jù)二項展開式的通項為,求得,再求二項展開式中的系數(shù).【詳解】因為二項展開式的各項系數(shù)和,所以,又二項展開式的通項為=,,所以二項展開式中的系數(shù)為.答案選擇B【點睛】本題考查二項式展開系數(shù)、通項等公式,屬于基礎題6、C【解析】依題意根據(jù)等差數(shù)列的通項公式可得,再根據(jù)等差數(shù)列前項和公式計算可得;【詳解】解:因為,所以,即,所以,,,,故選:C7、A【解析】作垂直準線于點,根據(jù)拋物線的定義,得到,當三點共線時,的值最小,進而可得出結(jié)果.【詳解】如圖,作垂直準線于點,由題意可得,顯然,當三點共線時,的值最??;因為,,準線,所以當三點共線時,,所以.故選A【點睛】本題主要考查拋物線上任一點到兩定點距離的和的最值問題,熟記拋物線的定義與性質(zhì)即可,屬于常考題型.8、B【解析】應用基本不等式“1”的代換求的最小值,注意等號成立條件,再根據(jù)題設不等式恒成立有,解一元二次不等式求解集即可.【詳解】由題設,,當且僅當時等號成立,∴要使恒成立,只需,故,∴.故選:B.9、C【解析】由題設寫出的中垂線,求其與的交點即得圓心坐標,再應用兩點距離公式求半徑,即可得圓的方程.【詳解】因為點,在M上,所以圓心在的中垂線上由,解得,即圓心為,則半徑,所以M的方程為故選:C10、B【解析】由兩式相除即可求公比.【詳解】設等比數(shù)列的公比為q,∵其各項均為正數(shù),故q>0,∵,∴,又∵,∴=4,則q=2.故選:B.11、C【解析】根據(jù)給定條件利用等差數(shù)列前n項和公式列式計算即可作答.【詳解】依題意,層塔從上層到下層掛燈盞數(shù)依次排成一列可得等差數(shù)列,,于是得,解得,,所以塔的底層共有燈盞.故選:C12、D【解析】由求出,從而可以求,再根據(jù)已知條件不等式恒成立,可以進行適當放大即可.【詳解】若n=1,則,故;若,則由得,故,所以,,又因為對恒成立,當時,則恒成立,當時,,所以,,,若n為奇數(shù),則;若n為偶數(shù),則,所以所以,對恒成立,必須滿足.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】由等比數(shù)列的性質(zhì)可得,再利用對數(shù)的性質(zhì)可得結(jié)果【詳解】解:因為等比數(shù)列的各項均為正數(shù),且,所以,所以故答案為:1014、①③④【解析】①直接利用基本不等式判斷即可;②直接利用基本不等式以及等號成立的條件判斷即可;③分子、分母同除,利用基本不等式即可判斷;④設,,利用指、對互化以及基本不等式即可判斷.【詳解】由于,,故恒成立,當且僅當時取等號,所以①正確;,當且僅當,即時取等號,由于,所以②不正確;因為,所以,當且僅當時取等號,而,即函數(shù)的最大值為,所以③正確;設,,則,,,,,所以,當且僅當,時取等號,故的最小值為,所以④正確.故答案為:①③④【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.15、①.②.【解析】通過判斷出,進而將化為基本量求得答案;然后用基本量將化簡,進而通過的范圍求得答案.【詳解】由,,,故答案為:16、①.②.【解析】根據(jù)直線l經(jīng)過A(2,1),B(1,)兩點,利用斜率公式,結(jié)合二次函數(shù)性質(zhì)求解;設其傾斜角為,,利用正切函數(shù)的性質(zhì)求解.【詳解】因為直線l經(jīng)過A(2,1),B(1,)兩點,所以l的斜率為,所以l的斜率取值范圍為,設其傾斜角為,,則,所以其傾斜角的取值范圍為,故答案為:,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)直線過定點;理由見解析【解析】(1)根據(jù)題意可求得,進而求得橢圓方程;(2)考慮直線斜率是否存在,設直線方程并聯(lián)立橢圓方程,得到根與系數(shù)的關系式,然后利用,將根與系數(shù)的關系式代入化簡得到,結(jié)合直線方程,化簡可得結(jié)論.【小問1詳解】依題意,,所以,故橢圓方程為:【小問2詳解】當直線MN的斜率不存在時,設M(),N(,),則,,此時M,N重合,不符合題意;當直線MN的斜率存在時,設MN的方程為:,M(,),N(),與橢圓方程聯(lián)立可得:,即,∴,即,∴,∴,∴,當時,,直線MN:,即,令,則,∴直線過定點【點睛】本題考查了橢圓方程的求法以及直線和橢圓相交時過定點的問題,解答時要注意解題思路的順暢,解答的難點在于運算量較大且復雜,需要十分細心.18、(1)(2)證明見解析【解析】(1)根據(jù)題意可列出關于的三個方程,解出即可得到橢圓C的方程;(2)根據(jù)對稱可得點坐標,再根據(jù)斜率公式可得,然后由點為橢圓C上的點得,代入化簡即可求出為定值【小問1詳解】由題意解得,.所以橢圓C的方程為.【小問2詳解】因為點關于坐標原點的對稱點為,所以的坐標為.,,所以,又因為點為橢圓C上的點,所以.19、(1)(2)【解析】(1)根據(jù)拋物線的焦半徑公式求得,即可得到拋物線方程;(2)寫出直線方程,聯(lián)立拋物線方程,進而求得弦長|AB|,再求出點P到直線的距離,即可求得答案.【小問1詳解】由拋物線的焦半徑公式可知:,即得,故拋物線方程為:;【小問2詳解】點Q(2,1)和焦點作直線l,則l方程為,即,聯(lián)立拋物線方程:,整理得,設,則,故,點P(3,c)在拋物線上,則,點P到直線l的距離為,故△PAB的面積為.20、(1);(2)【解析】(1)先分別求出命題為真命題和命題為真命題時參數(shù)的范圍,則可得當命題為假命題,實數(shù)的取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假,再分真,且假,和真,且假兩種情況分別求出參數(shù)的范圍,再綜合得到答案.【詳解】命題為真命題:對任意實數(shù)都有恒成立或;命題為真命題:關于的方程有實數(shù)根;(1)命題為假命題,則實數(shù)取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假.如果真,且假,有,且,則如果真,且假,有或,且,則綜上,實數(shù)的取值范圍為21、(1)(2)證明見解析【解析】(1)由橢圓定義可得到,再利用斜率公式及直線的斜率之積等于,列出方程,化簡對比系數(shù)可得;(2)分直線l的斜率為0和不為0兩種情況討論,利用可得到T在定直線上,且該直線是的中垂線即可得到證明.【小問1詳解】因為C上的點M滿足,所以C表示焦點在x軸上的橢圓,且,即,,所以,設,則,①所以直線的斜率,直線的斜率,由已知得,即,②由①②得,所以C的方程為【小問2詳解】當直線l的斜率為0時,A與重合,B與重合,,,成立.當直線l的斜率不為0時,設l的方程為聯(lián)立方程組,消x整理得所以,解得或設,則,由,得,所以設,由,得,所以,所以,所以點T在直線上,且,所以是等腰三角形,且,所以,綜上,【點睛】關鍵點點晴:本題第二問
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五不銹鋼罐體環(huán)保認證與綠色生產(chǎn)合同3篇
- 2025年度校園后勤保潔人員招聘合同范本
- 2025勞務公司技術創(chuàng)新與應用推廣合同3篇
- 二零二五年度數(shù)字貨幣交易安全保障合同4篇
- 2025年勞務分包合同招投標流程與規(guī)范(勞務分包合同定性招投標)3篇
- 二零二五年度國際教育培訓項目居間引進合同3篇
- 二零二五版供應鏈金融擔保答辯狀撰寫服務合同3篇
- 2025年健康教育和指導服務合同
- 2025年居家美容保養(yǎng)服務合同
- 2025年企業(yè)賠償合同法規(guī)條款
- 2024-2030年中國連續(xù)性腎臟替代治療(CRRT)行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 跨學科主題學習:實施策略、設計要素與評價方式(附案例)
- 場地委托授權
- 2024年四川省成都市龍泉驛區(qū)中考數(shù)學二診試卷(含答案)
- 項目工地春節(jié)放假安排及安全措施
- 印染廠安全培訓課件
- 紅色主題研學課程設計
- 胸外科手術圍手術期處理
- 裝置自動控制的先進性說明
- 《企業(yè)管理課件:團隊管理知識點詳解PPT》
- 移動商務內(nèi)容運營(吳洪貴)任務二 軟文的寫作
評論
0/150
提交評論