2024屆浙江省紹興市上虞區(qū)城南中學(xué)數(shù)學(xué)高二上期末經(jīng)典試題含解析_第1頁
2024屆浙江省紹興市上虞區(qū)城南中學(xué)數(shù)學(xué)高二上期末經(jīng)典試題含解析_第2頁
2024屆浙江省紹興市上虞區(qū)城南中學(xué)數(shù)學(xué)高二上期末經(jīng)典試題含解析_第3頁
2024屆浙江省紹興市上虞區(qū)城南中學(xué)數(shù)學(xué)高二上期末經(jīng)典試題含解析_第4頁
2024屆浙江省紹興市上虞區(qū)城南中學(xué)數(shù)學(xué)高二上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆浙江省紹興市上虞區(qū)城南中學(xué)數(shù)學(xué)高二上期末經(jīng)典試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義焦點(diǎn)相同,且離心率互為倒數(shù)的橢圓和雙曲線為一對相關(guān)曲線.已知,是一對相關(guān)曲線的焦點(diǎn),Р是這對相關(guān)曲線在第一象限的交點(diǎn),則點(diǎn)Р與以為直徑的圓的位置關(guān)系是()A.在圓外 B.在圓上C.在圓內(nèi) D.不確定2.已知拋物線:,焦點(diǎn)為,若過的直線交拋物線于、兩點(diǎn),、到拋物線準(zhǔn)線的距離分別為3、7,則長為A.3 B.4C.7 D.103.如圖,執(zhí)行該程序框圖,則輸出的的值為()A. B.2C. D.34.直線與橢圓交于兩點(diǎn),以線段為直徑的圓恰好經(jīng)過橢圓的左焦點(diǎn),則此橢圓的離心率為()A B.C. D.5.已知數(shù)列滿足,令是數(shù)列的前n項積,,現(xiàn)給出下列四個結(jié)論:①;②為單調(diào)遞增的等比數(shù)列;③當(dāng)時,取得最大值;④當(dāng)時,取得最大值其中所有正確結(jié)論的編號為()A.②④ B.①③C.②③④ D.①③④6.已知曲線C的方程為,則下列結(jié)論正確的是()A.當(dāng)時,曲線C為圓B.“”是“曲線C為焦點(diǎn)在x軸上的雙曲線”的充分而不必要條件C.“”是“曲線C為焦點(diǎn)在x軸上的橢圓”的必要而不充分條件D.存在實(shí)數(shù)k使得曲線C為雙曲線,其離心率為7.已知向量a→=(1,1,k),A. B.C. D.8.設(shè)是兩個不同的平面,是一條直線,以下命題正確的是A.若,則 B.若,則C.若,則 D.若,則9.若關(guān)于x的不等式的解集為,則關(guān)于x的不等式的解集是()A. B.,或C.,或 D.,或,或10.已知,,,若,,共面,則λ等于()A. B.3C. D.911.已知圓,直線,直線l被圓O截得的弦長最短為()A. B.C.8 D.912.若函數(shù),則單調(diào)增區(qū)間為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在處有極值.則=________14.若平面內(nèi)兩條直線,平行,則實(shí)數(shù)______15.若某幾何體的三視圖如圖所示,則該幾何體的體積是__________16.已知離心率為的橢圓:和離心率為的雙曲線:有公共的焦點(diǎn),其中為左焦點(diǎn),P是與在第一象限的公共點(diǎn).線段的垂直平分線經(jīng)過坐標(biāo)原點(diǎn),則的最小值為_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,直線,直線l與圓C相交于P,Q兩點(diǎn)(1)求的最小值;(2)當(dāng)?shù)拿娣e最大時,求直線l的方程18.(12分)要設(shè)計一種圓柱形、容積為500mL的一體化易拉罐金屬包裝,如何設(shè)計才能使得總成本最低?19.(12分)已知等差數(shù)列的前項和為,數(shù)列是等比數(shù)列,,,,.(1)求數(shù)列和的通項公式;(2)若,設(shè)數(shù)列的前項和為,求.20.(12分)已知,,其中(1)已知,若為真,求的取值范圍;(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍21.(12分)已知圓的圓心在直線上,且過點(diǎn)(1)求圓的方程;(2)已知直線經(jīng)過原點(diǎn),并且被圓截得的弦長為2,求直線l的方程.22.(10分)已知函數(shù)f(x)=ax3+bx2﹣3x在x=﹣1和x=3處取得極值.(1)求a,b的值(2)求f(x)在[﹣4,4]內(nèi)的最值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設(shè)橢圓的長軸長為,橢圓的焦距為,雙曲線的實(shí)軸長為,根據(jù)題意可得,設(shè),根據(jù)橢圓與雙曲線的定義將分別用表示,設(shè),再根據(jù)兩點(diǎn)的距離公式將點(diǎn)的坐標(biāo)用表示,從而可判斷出點(diǎn)與圓的位置關(guān)系.【詳解】解:設(shè)橢圓的長軸長為,橢圓的焦距為,雙曲線的實(shí)軸長為,設(shè)橢圓和雙曲線的離心率分別為,則,所以,以為直徑的圓的方程為,設(shè),則有,所以,設(shè),,所以①,②,則①②得,所以,所以,將代入②得,所以,,則點(diǎn)到圓心的距離為,所以點(diǎn)Р在以為直徑的圓外.故選:A.2、D【解析】利用拋物線的定義,把的長轉(zhuǎn)化為點(diǎn)到準(zhǔn)線的距離的和得解【詳解】解:拋物線:,焦點(diǎn)為,過的直線交拋物線于、兩點(diǎn),、到拋物線準(zhǔn)線的距離分別為3、7,則故選D【點(diǎn)睛】本題考查拋物線定義的應(yīng)用,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.3、B【解析】根據(jù)程序流程圖依次算出的值即可.【詳解】,第一次執(zhí)行,,第二次執(zhí)行,,第三次執(zhí)行,,所以輸出.故選:B4、D【解析】根據(jù)題意作出示意圖,根據(jù)圓的性質(zhì)以及直線的傾斜角求解出的長度,再根據(jù)橢圓的定義求解出的關(guān)系,則橢圓離心率可求.【詳解】設(shè)橢圓的左右焦點(diǎn)分別為,如下圖:因?yàn)橐跃€段為直徑的圓恰好經(jīng)過橢圓的左焦點(diǎn),所以且,所以,又因?yàn)榈膬A斜角為,所以,所以為等邊三角形,所以,所以,因?yàn)?,所以,所以,所以,所以,故選:D.5、B【解析】求出,即可判斷選項①正確;求出,即可選項②錯誤;求出,利用單調(diào)性即可判斷選項③正確;求出,即可判斷選項④錯誤,即得解.【詳解】解:因?yàn)椋偎?,,②①②得,,整理得,又,滿足上式,所以,因?yàn)?,所以?shù)列為等差數(shù)列,公差為,所以,故①正確;,因?yàn)?,故?shù)列為等比數(shù)列,其中首項,公比為的等比數(shù)列,因?yàn)椋?,所以?shù)列為遞減的等比數(shù)列,故②錯誤;,因?yàn)闉閱握{(diào)遞增函數(shù),所以當(dāng)最大時,有最大值,因?yàn)椋詴r,最大,即時,取得最大值,故③正確;設(shè),由可得,,解得或,又因?yàn)椋詴r,取得最大值,故④錯誤;故選:B6、C【解析】根據(jù)橢圓、雙曲線的定義及簡單幾何性質(zhì)計算可得;【詳解】解:由題意,曲線C的方程為,對于A中,當(dāng)時,曲線C的方程為,此時曲線C表示橢圓,所以A錯誤;對于B中,當(dāng)曲線C的方程為表示焦點(diǎn)在x軸上的雙曲線時,則滿足,解得,所以“”是“曲線C為焦點(diǎn)在x軸上的雙曲線”的必要不充分條件,所以B不正確;對于C中,當(dāng)曲線C的方程為表示焦點(diǎn)在x軸上的橢圓時,則滿足,解得,所以“”是“曲線C為焦點(diǎn)在x軸上的雙曲線”的必要不充分條件,所以C正確;對于D中,當(dāng)曲線C的方程為表示雙曲線,且離心率為時,此時雙曲線的實(shí)半軸長等于虛半軸長,此時,解得,此時方程表示圓,所以不正確.故選:C.7、D【解析】根據(jù)向量的坐標(biāo)運(yùn)算和向量垂直數(shù)量積為0可解.【詳解】解:根據(jù)題意,易得a→∵與兩向量互相垂直,∴0+2+k+2=0,解得.故選:D8、C【解析】對于A、B、D均可能出現(xiàn),而對于C是正確的9、D【解析】先利用已知一元二次不等式的解集求得參數(shù),再代入所求不等式,利用分式大于零,則分子分母同號,列不等式計算即得結(jié)果.【詳解】不等式解集為,即的二根是1和2,利用根和系數(shù)的關(guān)系可知,故不等式即轉(zhuǎn)化成,即,等價于或者,解得或,或者.故解集為,或,或.故選:D.【點(diǎn)睛】分式不等式的解法:(1)先化簡成右邊為零的形式(或),等價于一元二次不等式(或)再求解即可;(2)先化簡成右邊為零的形式(或),再利用分子分母同號(或者異號),列不等式組求解即可.10、C【解析】由,,共面,設(shè),列方程組能求出λ的值【詳解】∵,,共面,∴設(shè)(實(shí)數(shù)m、n),即,∴,解得故選:C11、B【解析】先求得直線過定點(diǎn),再根據(jù)當(dāng)點(diǎn)與圓心連線垂直于直線l時,被圓O截得的弦長最短求解.【詳解】因?yàn)橹本€方程,即為,所以直線過定點(diǎn),因?yàn)辄c(diǎn)在圓的內(nèi)部,當(dāng)點(diǎn)與圓心連線垂直于直線l時,被圓O截得的弦長最短,點(diǎn)與圓心(0,0)的距離為,此時,最短弦長為,故選:B12、C【解析】求出導(dǎo)函數(shù),令解不等式即可得答案.【詳解】解:因?yàn)楹瘮?shù),所以,令,得,所以的單調(diào)增區(qū)間為,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】根據(jù)極值點(diǎn)概念求解【詳解】,由題意得,,經(jīng)檢驗(yàn)滿足題意故答案為:414、-1或2【解析】根據(jù)兩直線平行,利用直線平行的條件列出方程解得答案.【詳解】∵,∴,解得或,經(jīng)驗(yàn)證都符合題意,故答案為:-1或215、1【解析】根據(jù)三視圖可得如圖所示的幾何體,從而可求其體積.【詳解】據(jù)三視圖分析知,該幾何體為直三棱柱,且底面為直角邊為1的等腰直角三角形,高為2,所以其體積故答案為:116、##4.5【解析】設(shè)為右焦點(diǎn),半焦距為,,由題意,,則,所以,從而有,最后利用均值不等式即可求解.【詳解】解:設(shè)為右焦點(diǎn),半焦距為,,由題意,,則,所以,即,故,當(dāng)且僅當(dāng)時取等,所以,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)4;(2)或.【解析】(1)過定點(diǎn)D(4,2),當(dāng)CD⊥l時,|PQ|最?。?2),當(dāng)時,△CPQ面積最大,此時△CPQ為等腰直角三角形,圓心到直線l的距離,據(jù)此即可求出m.【小問1詳解】由,得,由,∴直線l過定點(diǎn)D(4,2),∵,∴在圓C內(nèi)部,∴直線和l與圓C相交,當(dāng)CD⊥l時,|PQ|最小,;【小問2詳解】∵,∴當(dāng)時,△CPQ面積最大,此時△CPQ為等腰直角三角形,故圓心到直線l的距離,∴,解得,∴此時l的方程為:或.18、當(dāng)圓柱底面半徑為,高為時,總成本最底.【解析】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,進(jìn)而根據(jù)體積得到,然后求出表面積,進(jìn)而運(yùn)用導(dǎo)數(shù)的方法求得表面積的最小值,此時成本最小.【詳解】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,每平方厘米金屬包裝造價為元,由題意得:,則,表面積造價,,令,得,令,得,的單調(diào)遞減區(qū)間為,遞增區(qū)間為,當(dāng)圓柱底面半徑為,高為時,總成本最底.19、(1),;(2).【解析】(1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,根據(jù)題意列出表達(dá)式,解出公比和公差,再根據(jù)等差數(shù)等比列的通項公式的求法求出通項即可;(2)根據(jù)第一問得到前n項和,數(shù)列,分組求和即可.解析:(1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,∵,,,,∴,∴,,∴,.(2)由(1)知,,∴,∴.20、(1)(2)【解析】(1)求出兩個命題為真命題時的解集然后利用為真,取并求得的取值范圍;(2)由是的充分不必要條件,即,,其逆否命題為,列出不等式組求解即可.【詳解】(1)由,解得,所以又,因?yàn)?,解得,所以.?dāng)時,,又為真,所以.(2)由是的充分不必要條件,即,,其逆否命題為,由(1),,所以,即:【點(diǎn)睛】該題考查的是有關(guān)邏輯的問題,涉及到的知識點(diǎn)有命題的真假判斷與應(yīng)用,充分不必要條件對應(yīng)的等價結(jié)果,注意原命題與逆否命題等價,屬于簡單題目.21、(1);(2)或.【解析】(1)根據(jù)題意設(shè)圓心坐標(biāo)為,進(jìn)而得,解得,故圓的方程為(2)分直線的斜率存在和不存在兩種情況討論求解即可.【詳解】(1)圓的圓心在直線上,設(shè)所求圓心坐標(biāo)為∵過點(diǎn),解得∴所求圓的方程為(2)直線經(jīng)過原點(diǎn),并且被圓截得的弦長為2①當(dāng)直線的斜率不存在時,直線的方程為,此時直線被圓截得的弦長為2,滿足條件;②當(dāng)直線的斜率存在時,設(shè)直線的方程為,由于直線被圓截得的弦長為,故圓心到直線的距離為故由點(diǎn)到直線的距離公式得:解得,所以直線l的方程為綜上所述,則直線l的方程為或【點(diǎn)睛】易錯點(diǎn)點(diǎn)睛:本題第二問在解題的過程中要注意直線斜率不存在情況的討論,即分直線的斜率存在和不存在兩種,避免在解題的過程中忽視斜率不存在的情況致錯,考查運(yùn)算求解能力與分類討論思想,是中檔題.22、(1)a,b=﹣1(2)f(x)min=,f(x)max=【解析】(1)先對函數(shù)求導(dǎo),由題意可得=3ax2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論