版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
安徽省六安市一中2023-2024學(xué)年數(shù)學(xué)高二上期末預(yù)測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.十二平均律是我國明代音樂理論家和數(shù)學(xué)家朱載堉發(fā)明的.明萬歷十二年(公元1584年),他寫成《律學(xué)新說》,提出了十二平均律的理論.十二平均律的數(shù)學(xué)意義是:在1和2之間插入11個正數(shù),使包含1和2的這13個數(shù)依次成遞增的等比數(shù)列.依此規(guī)則,插入的第四個數(shù)應(yīng)為()A. B.C. D.2.已知定義在R上的函數(shù)滿足,且當(dāng)時(shí),,則下列結(jié)論中正確的是()A. B.C. D.3.等比數(shù)列的各項(xiàng)均為正數(shù),且,則=()A.8 B.16C.32 D.644.某校開展研學(xué)活動時(shí)進(jìn)行勞動技能比賽,通過初選,選出共6名同學(xué)進(jìn)行決賽,決出第1名到第6名的名次(沒有并列名次),和去詢問成績,回答者對說“很遺?,你和都末拿到冠軍;對說“你當(dāng)然不是最差的”.試從這個回答中分析這6人的名次排列順序可能出現(xiàn)的結(jié)果有()A.720種 B.600種C.480種 D.384種5.下列命題正確的是()A.經(jīng)過三點(diǎn)確定一個平面B.經(jīng)過一條直線和一個點(diǎn)確定一個平面C.四邊形確定一個平面D.兩兩相交且不共點(diǎn)的三條直線確定一個平面6.已知定義域?yàn)镽的函數(shù)f(x)不是偶函數(shù),則下列命題一定為真命題的是()A.?x∈R,f(-x)≠f(x)B.?x∈R,f(-x)≠-f(x)C?x0∈R,f(-x0)≠f(x0)D.?x0∈R,f(-x0)≠-f(x0)7.已知數(shù)列滿足,(且),若恒成立,則M的最小值是()A.2 B.C. D.38.“趙爽弦圖”是我國古代數(shù)學(xué)的瑰寶,如圖所示,它是由四個全等的直角三角形和一個正方形構(gòu)成.現(xiàn)用4種不同的顏色(4種顏色全部使用)給這5個區(qū)域涂色,要求相鄰的區(qū)域不能涂同一種顏色,每個區(qū)域只涂一種顏色,則不同的涂色方案有()A.24種 B.48種C.72種 D.96種9.已知函數(shù)有兩個不同的零點(diǎn),則實(shí)數(shù)的取值范圍是()A B.C. D.10.隨著城市生活節(jié)奏的加快,網(wǎng)上訂餐成為很多上班族的選擇,下表是某外賣騎手某時(shí)間段訂餐數(shù)量與送餐里程的統(tǒng)計(jì)數(shù)據(jù)表:訂餐數(shù)/份122331送餐里程/里153045現(xiàn)已求得上表數(shù)據(jù)的回歸方程中的值為1.5,則據(jù)此回歸模型可以預(yù)測,訂餐100份外賣騎手所行駛的路程約為()A.155里 B.145里C.147里 D.148里11.平行六面體的各棱長均相等,,,則異面直線與所成角的余弦值為()A. B.C. D.12.已知,設(shè)函數(shù),若關(guān)于的不等式恒成立,則的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若橢圓的長軸是短軸的2倍,且經(jīng)過點(diǎn),則橢圓的離心率為________.14.已知等比數(shù)列中,則q=___15.如圖是某賽季CBA廣東東莞銀行隊(duì)甲、乙兩名籃球運(yùn)動員每場比賽得分的莖葉圖,則甲、乙比賽得分的中位數(shù)之和是______.16.已知圓,過點(diǎn)作圓O的切線,則切線方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在棱長為3的正方體中,分別是上的點(diǎn)且(1)求證:;(2)求平面與平面的夾角的余弦值18.(12分)已知函數(shù).(1)求函數(shù)的極值;(2)若對恒成立,求實(shí)數(shù)a的取值范圍.19.(12分)某校高三年級進(jìn)行了一次數(shù)學(xué)測試,全年級學(xué)生的成績都落在區(qū)間內(nèi),其成績的頻率分布直方圖如圖所示,若(1)求a,b的值;(2)若成績落在區(qū)間內(nèi)的人數(shù)為36人,請估計(jì)該校高三學(xué)生的人數(shù)20.(12分)如圖,正三棱柱中,D是的中點(diǎn),.(1)求點(diǎn)C到平面的距離;(2)試判斷與平面的位置關(guān)系,并證明你的結(jié)論.21.(12分)如圖①,在梯形PABC中,,與均為等腰直角三角形,,,D,E分別為PA,PC的中點(diǎn).將沿DE折起,使點(diǎn)P到點(diǎn)的位置(如圖②),G為線段的中點(diǎn).在圖②中解決以下兩個問題.(1)求證:平面平面;(2)若二面角為120°時(shí),求CG與平面所成角的正弦值.22.(10分)已知橢圓C:的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,△AF1F2的周長為6,離心率等于.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點(diǎn)(4,0)的直線l交橢圓C于M、N兩點(diǎn),且OM⊥ON,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】先求出等比數(shù)列的公比,再由等比數(shù)列的通項(xiàng)公式即可求解.【詳解】用表示這個數(shù)列,依題意,,則,,第四個數(shù)即.故選:C.2、B【解析】由可得,利用導(dǎo)數(shù)判斷函數(shù)在上的單調(diào)性,由此比較函數(shù)值的大小確定正確選項(xiàng).【詳解】∵∴,當(dāng)時(shí),,∴,故∴在內(nèi)單調(diào)遞增,又,∴,所以故選:B3、B【解析】由等比數(shù)列的下標(biāo)和性質(zhì)即可求得答案.【詳解】由題意,,所以.故選:B.4、D【解析】不是第一名且不是最后一名,的限制最多,先排有4種情況,再排,也有4種情況,余下的問題是4個元素在4個位置全排列,根據(jù)分步計(jì)數(shù)原理求解即可【詳解】由題意,不是第一名且不是最后一名,的限制最多,故先排,有4種情況,再排,也有4種情況,余下4人有種情況,利用分步相乘計(jì)數(shù)原理知有種情況故選:D.5、D【解析】由平面的基本性質(zhì)結(jié)合公理即可判斷.【詳解】對于A,過不在一條直線上三點(diǎn)才能確定一個平面,故A不正確;對于B,經(jīng)過一條直線和直線外一個點(diǎn)確定一個平面,故B不正確;對于C,空間四邊形不能確定一個平面,故C不正確;對于D,兩兩相交且不共點(diǎn)的三條直線確定一個平面,故D正確.故選:D6、C【解析】利用偶函數(shù)的定義和全稱命題的否定分析判斷解答.【詳解】∵定義域?yàn)镽的函數(shù)f(x)不是偶函數(shù),∴?x∈R,f(-x)=f(x)為假命題,∴?x0∈R,f(-x0)≠f(x0)為真命題.故選C【點(diǎn)睛】本題主要考查偶函數(shù)的定義和全稱命題的否定,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.7、C【解析】根據(jù),(且),利用累加法求得,再根據(jù)恒成立求解.【詳解】因?yàn)閿?shù)列滿足,,(且)所以,,,,因?yàn)楹愠闪ⅲ?,則M的最小值是,故選:C8、B【解析】根據(jù)題意,分2步進(jìn)行分析區(qū)域①、②、⑤和區(qū)域③、④的涂色方法,由分步計(jì)數(shù)原理計(jì)算可得答案.【詳解】根據(jù)題意,分2步進(jìn)行分析:當(dāng)區(qū)域①、②、⑤這三個區(qū)域兩兩相鄰,有種涂色的方法;當(dāng)區(qū)域③、④,必須有1個區(qū)域選第4種顏色,有2種選法,選好后,剩下的區(qū)域有1種選法,則區(qū)域③、④有2種涂色方法,故共有種涂色的方法.故選:B9、A【解析】分離參數(shù),求函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)有兩個零點(diǎn)可知函數(shù)的單調(diào)性,即可求解.【詳解】由題意得有兩個零點(diǎn)令,則且所以,在上為增函數(shù),可得,當(dāng),在上單調(diào)遞減,可得,即要有兩個零點(diǎn)有兩個零點(diǎn),實(shí)數(shù)的取值范圍是.故選:A【點(diǎn)睛】方法點(diǎn)睛:已知函數(shù)有零點(diǎn)求參數(shù)取值范圍常用的方法和思路(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解10、C【解析】由統(tǒng)計(jì)數(shù)據(jù)求樣本中心,根據(jù)樣本中心在回歸直線上求得,即可得回歸方程,進(jìn)而估計(jì)時(shí)的y值即可.【詳解】由題意:,,則,可得,故,當(dāng)時(shí),.故選:C11、B【解析】利用基底向量表示出向量,,即可根據(jù)向量夾角公式求出【詳解】如圖所示:不妨設(shè)棱長為1,,,所以==,,,即,故異面直線與所成角的余弦值為故選:B注意事項(xiàng):1.將答案寫在答題卡上2.本卷共10小題,共80分.12、D【解析】由題設(shè)易知上恒成立,而在上,討論、,結(jié)合導(dǎo)數(shù)研究的最值,由不等式恒成立求的取值范圍.【詳解】由時(shí),在上;由時(shí),在上遞減,值域?yàn)椋涣钋?,則,當(dāng)時(shí),,即遞增,值域?yàn)椋瑵M足題設(shè);當(dāng)時(shí),在上,即遞減,在上,即遞增,此時(shí)值域?yàn)?;?dāng),即時(shí)存在,而在中,此時(shí),不合題設(shè);所以,此時(shí)要使的不等式恒成立,只需,即,可得;綜上,關(guān)于的不等式恒成立,則的取值范圍為.故選:D【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:由題設(shè)易知上,只需在上恒有即可.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分類討論焦點(diǎn)在軸與焦點(diǎn)在軸兩種情況.【詳解】因?yàn)闄E圓經(jīng)過點(diǎn),當(dāng)焦點(diǎn)在軸時(shí),可知,,所以,所以,當(dāng)焦點(diǎn)在軸時(shí),同理可得.故答案為:14、3【解析】根據(jù)等比數(shù)列的性質(zhì)求得,再根據(jù)等比數(shù)列的通項(xiàng)公式求得答案.【詳解】等比數(shù)列中,故,,所以,故答案為:315、58【解析】分別將甲、乙兩名運(yùn)動員的得分按小到大或者大到小排序,分別確定中位數(shù),再相加即可【詳解】因?yàn)榧?、乙兩名籃球運(yùn)動員各參賽11場,故中位數(shù)是第6個數(shù)甲的得分按小到大排序后為:12,22,23,32,33,34,35,40,43,44,46,所以,中位數(shù)為34乙的得分按小到大排序后為:12,13,21,22,23,24,31,31,34,40,49所以,中位數(shù)為24所以,中位數(shù)之和為34+24=58,故答案為:5816、或【解析】首先判斷點(diǎn)圓位置關(guān)系,再設(shè)切線方程并聯(lián)立圓的方程,根據(jù)所得方程求參數(shù)k,即可寫出切線方程.【詳解】由題設(shè),,故在圓外,根據(jù)圓及,知:過作圓O的切線斜率一定存在,∴可設(shè)切線為,聯(lián)立圓的方程,整理得,∴,解得或.∴切線方程為或.故答案為:或.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系后得到相關(guān)向量,再運(yùn)用數(shù)量積證明;(2)求出相關(guān)平面的法向量,再運(yùn)用夾角公式計(jì)算即可.【小問1詳解】建立如下圖所示的空間直角坐標(biāo)系:,,,,,∴,故.【小問2詳解】,,,設(shè)平面的一個法向量為,由,令,則,取平面的一個法向量為,設(shè)平面與平面夾角為,易知:為銳角,故,即平面與平面夾角的余弦值為.18、(1)極大值為,無極小值(2)【解析】(1)求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的正負(fù)判斷極值點(diǎn),代入原函數(shù)計(jì)算即可;(2)將變形,即對恒成立,然后構(gòu)造函數(shù),利用求導(dǎo)判定函數(shù)的單調(diào)性,進(jìn)而確定實(shí)數(shù)a的取值范圍..【小問1詳解】對函數(shù)求導(dǎo)可得:,可知當(dāng)時(shí),時(shí),,即可知在上單調(diào)遞增,在上單調(diào)遞減由上可知,的極大值為,無極小值【小問2詳解】由對恒成立,當(dāng)時(shí),恒成立;當(dāng)時(shí),對恒成立,可變形為:對恒成立,令,則;求導(dǎo)可得:由(1)知即恒成立,當(dāng)時(shí),,則在上單調(diào)遞增;又,因,故,,所以在上恒成立,當(dāng)時(shí),令,得,當(dāng)時(shí),在上單調(diào)遞增,當(dāng)時(shí),在上單調(diào)遞減,從而可知的最大值為,即,因此,對都有恒成立,所以,實(shí)數(shù)a的取值范圍是.19、(1)(2)人【解析】(1)由頻率分布直方圖的性質(zhì)求得,結(jié)合,即可求得的值;(2)由頻率分布直方圖求得落在區(qū)間內(nèi)的概率,進(jìn)而求得該校高三年級的人數(shù)【小問1詳解】解:由頻率分布直方圖的性質(zhì),可得:,可得,又由,可得解得;【小問2詳解】解:由頻率分布直方圖可得,成績落在區(qū)間內(nèi)的概率為,則該校高三年級的人數(shù)為(人)20、(1)(2)平行,證明過程見解析.【解析】(1)利用等體積法即可求解;(2)利用線面平行判定即可求解.【小問1詳解】解:正三棱柱中,D是的中點(diǎn),所以,,正三棱柱中,所以又因?yàn)檎庵校瑐?cè)面平面且交線為且平面中,所以平面又平面所以設(shè)點(diǎn)C到平面的距離為在三棱錐中,即所以點(diǎn)C到平面的距離為.【小問2詳解】與平面的位置,證明如下:連接交于點(diǎn),連接,如下圖所示,因?yàn)檎庵膫?cè)面為矩形所以為的中點(diǎn)又因?yàn)闉橹悬c(diǎn)所以為的中位線所以又因?yàn)槠矫?,且平面所以平?1、(1)證明見解析(2)【解析】(1)通過兩個線面平行即可證明面面平行(2)以為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,通過空間向量的方法計(jì)算線面角的正弦值【小問1詳解】如上圖所示,在中,因?yàn)镈,E分別為PA,PC的中點(diǎn),所以,因?yàn)槠矫妫矫?,所以平面,連接,交于點(diǎn),連接,因?yàn)榕c均為等腰直角三角形,,所以,,所以,且,則四邊形是平行四邊形,所以是中點(diǎn),且G為線段的中點(diǎn),所以中,,因?yàn)槠矫妫矫?,所以平面,又因?yàn)槠矫?,,所以平面平面【小?詳解】因?yàn)?,平面,,所以平面,所以可以以為坐?biāo)原點(diǎn),建立如上圖所示的直角坐標(biāo)系,此時(shí),,,,因?yàn)镚為線段的中點(diǎn),所以,所以,,,設(shè)平面的法向量為,則有,即,得其中一個法向量,,所以CG與平面所成角的正弦值為22、(1);(2)或.【解析】(1)由條件得,再結(jié)合,可求得橢圓方程;(2)由題意設(shè)直線l:x=my+4,設(shè)M(x1,y1),N(x2,y2),直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林藝術(shù)學(xué)院《電影寫作》2021-2022學(xué)年期末試卷
- 吉林師范大學(xué)《中國政治制度史》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉林師范大學(xué)《學(xué)校體育學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 2022年國家公務(wù)員考試《行測》真題(副省級)及答案解析
- 2024年大件互送車隊(duì)合同范本
- 2022年公務(wù)員多省聯(lián)考《申論》真題(青??h鄉(xiāng)卷)及答案解析
- 外研版英語八年級下冊課文原文和翻譯
- (統(tǒng)編2024版)道德與法治七上10.1愛護(hù)身體 課件
- 2022年醫(yī)療行業(yè)干部考察工作總結(jié)
- 吉林師范大學(xué)《理論力學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 鞋子工廠供貨合同模板
- 物理人教版2024版八年級上冊5.1 透鏡 課件02
- 2024碼頭租賃合同范本
- 期中測試卷(1-4單元)(試題)-2024-2025學(xué)年人教版數(shù)學(xué)四年級上冊
- 應(yīng)用文寫作+以“A+Clean-up+Activity”為題給學(xué)校英語報(bào)寫一篇新聞報(bào)道+講義 高二上學(xué)期月考英語試題
- 木材采運(yùn)智能決策支持系統(tǒng)
- 2024年華電電力科學(xué)研究院限公司招聘26人歷年高頻難、易錯點(diǎn)500題模擬試題附帶答案詳解
- 校園反詐騙課件
- 中石油克拉瑪依石化有限責(zé)任公司招聘筆試題庫2024
- 上海市市轄區(qū)(2024年-2025年小學(xué)四年級語文)部編版期末考試(下學(xué)期)試卷及答案
- 上海市高行中學(xué)2024-2025學(xué)年高二上學(xué)期9月質(zhì)量檢測數(shù)學(xué)試卷
評論
0/150
提交評論