




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省宿州市時村中學2024屆高二上數(shù)學期末達標檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,、分別為橢圓的左、右焦點,為橢圓上的點,是線段上靠近的三等分點,為正三角形,則橢圓的離心率為()A. B.C. D.2.已知空間向量,,則()A. B.C. D.3.已知橢圓的右焦點為,則正數(shù)的值是()A.3 B.4C.9 D.214.某海關緝私艇在執(zhí)行巡邏任務時,發(fā)現(xiàn)其所在位置正西方向20nmile處有一走私船只,正以30nmile/h的速度向北偏東30°的方向逃竄,若緝私艇突然發(fā)生機械故障,20min后才以的速度開始追趕,則在走私船只不改變航向和速度的情況下,緝私艇追上走私船只的最短時間為()A.1h B.C. D.5.已知點P在拋物線上,點Q在圓上,則的最小值為()A. B.C. D.6.已知拋物線的焦點坐標是,則拋物線的標準方程為A. B.C. D.7.公比為的等比數(shù)列,其前項和為,前項積為,滿足,.則下列結論正確的是()A.的最大值為B.C.最大值為D.8.設斜率為2的直線l過拋物線()的焦點F,且和y軸交于點A,若(O為坐標原點)的面積為4,則拋物線方程為()A. B.C. D.9.若(為虛數(shù)單位),則復數(shù)在復平面內的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限10.日常飲用水通常都是經(jīng)過凈化的,隨若水純凈度的提高,所需凈化費用不斷增加.已知水凈化到純凈度為時所需費用單位:元為那么凈化到純凈度為時所需凈化費用的瞬時變化率是()元/t.A. B.C. D.11.若直線與互相平行,且過點,則直線的方程為()A. B.C. D.12.已知兩直線方程分別為l1:x+y=1,l2:ax+2y=0,若l1⊥l2,則a=()A2 B.-2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設拋物線的焦點為,直線過焦點,且與拋物線交于兩點,,則__________14.動點M在圓上移動,則M與定點連線的中點P的軌跡方程為___________.15.若不等式的解集是,則的值是___________.16.已知拋物線:()的焦點到準線的距離為4,過點的直線與拋物線交于,兩點,若,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,以坐標原點O為圓心的圓與直線相切.(1)求圓O的方程;(2)設圓O交x軸于A,B兩點,點P在圓O內,且是、的等比中項,求的取值范圍.18.(12分)在平面直角坐標系xOy中,點A(2,4),直線l:,設圓C的半徑為1,圓心在直線l上,圓心也在直線上.(1)求圓C的方程;(2)過點A作圓C的切線,求切線的方程.19.(12分)求滿足下列條件的圓錐曲線的標準方程:(1)已知橢圓的焦點在x軸上且一個頂點為,離心率為;(2)求一個焦點為,漸近線方程為的雙曲線的標準方程;(3)拋物線,過其焦點斜率為1的直線交拋物線于A、B兩點,且線段AB的中點的縱坐標為2.20.(12分)某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設建造成本僅與表面積有關,側面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12000π元(π為圓周率)(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;(2)討論函數(shù)V(r)的單調性,并確定r和h為何值時該蓄水池的體積最大21.(12分)如圖所示,在四棱錐中,平面,底面是等腰梯形,.且(1)證明:平面平面;(2)若,求平面與平面的夾角的余弦值22.(10分)已知定義域為的函數(shù)是奇函數(shù),其中為指數(shù)函數(shù)且的圖象過點(1)求的表達式;(2)若對任意的.不等式恒成立,求實數(shù)的取值范圍;
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)橢圓定義及正三角形的性質可得到\,再在中運用余弦定理得到、的關系,進而求得橢圓的離心率【詳解】由橢圓的定義知,,則,因為正三角形,所以,在中,由余弦定理得,則,,故選:D【點睛】本題考查橢圓的離心率的求解,考查考生的邏輯推理能力及運算求解能力,屬于中等題.2、C【解析】直接利用向量的坐標運算法則求解即可【詳解】因為,,所以,故選:C3、A【解析】由直接可得.【詳解】由題知,所以,因為,所以.故選:A4、A【解析】設小時后,相遇地點為,在三角形中根據(jù)題目條件得出,再在三角形中,由勾股定理即可求出.【詳解】以緝私艇為原點,建立如下圖所示的直角坐標系.圖中走私船所在位置為,設緝私艇追上走私船的最短時間為,相遇地點為.則,走私船以的速度向北偏東30°的方向逃竄,60°.因為20min后緝私艇才以的速度開始追趕走私船,所以20min走私船行走了,到達.在三角形中,由余弦定理知:,則,所以.在三角形中,,,有:,化簡得:,則.緝私艇追上走私船只的最短時間為1h.故選:A.點睛】5、C【解析】先計算拋物線上的點P到圓心距離的最小值,再減去半徑即可.【詳解】設,由圓心,得,∴時,,∴故選:C.6、D【解析】根據(jù)拋物線的焦點坐標得到2p=4,進而得到方程.【詳解】拋物線的焦點坐標是,即p=2,2p=4,故得到方程為.故答案為D.【點睛】這個題目考查了拋物線的標準方程的求法,題目較為簡單.7、A【解析】根據(jù)已知條件,判斷出,即可判斷選項D,再根據(jù)等比數(shù)列的性質,判斷,,由此判斷出選項A,B,C.【詳解】根據(jù)題意,等比數(shù)列滿足條件,,,若,則,則,,則,這與已知條件矛盾,所以不符合題意,故選項D錯誤;因為,,,所以,,,則,,數(shù)列前2021項都大于1,從第2022項開始都小于1,因此是數(shù)列中的最大值,故選項A正確由等比數(shù)列的性質,,故選項B不正確;而,由以上分析可知其無最大值,故C錯誤;故選:A8、B【解析】根據(jù)拋物線的方程寫出焦點坐標,求出直線的方程、點的坐標,最后根據(jù)三角形面積公式進行求解即可.【詳解】拋物線的焦點的坐標為,所以直線的方程為:,令,解得,因此點的坐標為:,因為面積為4,所以有,即,,因此拋物線的方程為.故選:B.9、A【解析】根據(jù)復數(shù)運算法則求出z=a+bi形式,根據(jù)復數(shù)的幾何意義即可求解.【詳解】,z對應的點在第一象限.故選:A10、B【解析】由題意求出函數(shù)的導函數(shù),然后令即可求解【詳解】因為,所以,則,故選:11、D【解析】由題意設直線的方程為,然后將點代入直線中,可求出的值,從而可得直線的方程【詳解】因為直線與互相平行,所以設直線的方程為,因為直線過點,所以,得,所以直線的方程為,故選:D12、B【解析】直接利用直線垂直公式計算得到答案.【詳解】因為l1⊥l2,所以k1k2=-1,即-=1,解得a=-2.故選:【點睛】本題考查了根據(jù)直線垂直計算參數(shù),屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】拋物線焦點為,由于直線和拋物線有兩個交點,故直線斜率存在.根據(jù)拋物線的定義可知,故的縱坐標為,橫坐標為.不妨設,故直線的方程為,聯(lián)立直線方程和拋物線方程,化簡得,解得,故.所以.【點睛】本小題主要考查直線和拋物線的位置關系,考查拋物線的幾何性質和定義.考查三角形面積公式.在解題過程中,先根據(jù)題目所給拋物線的方程求得焦點的坐標,然后利用拋物線的定義:到定點的距離等于到定直線的距離,由此求得點的坐標,進而求得直線的方程,聯(lián)立直線方程和拋物線方程求得點的坐標.最后求得面積比.14、##【解析】設,中點,根據(jù)中點坐標公式求出,代入圓的標準方程即可得出結果.【詳解】設,中點,則,即,因為在圓上,代入得故答案為:.15、【解析】利用和是方程的兩根,再利用根與系數(shù)的關系即可求出和的值,即可得的值.【詳解】由題意可得:方程的兩根是和,由根與系數(shù)的關系可得:,所以,所以,故答案為:16、15【解析】易得拋物線方程為,根據(jù),求得點P的坐標,進而得到直線l的方程,與拋物線方程聯(lián)立,再利用拋物線定義求解.【詳解】解:因為拋物線的焦點到準線的距離為4,所以,則拋物線:,設點的坐標為,的坐標為,因為,所以,則,則,所以直線的方程為,代入拋物線方程可得,故,則,所以故答案為:15三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)題意設出圓方程,結合該圓與直線相切,求得半徑,則問題得解;(2)設出點的坐標為,根據(jù)題意,求得的等量關系,再構造關于的函數(shù)關系,求得函數(shù)值域即可.【小問1詳解】根據(jù)題意,設的方程為,又該圓與直線相切,故可得,則圓的方程為.【小問2詳解】對圓:,令,則,不妨設,則,設點,因為點在圓內,故;因為是、的等比中項,故可得:,則,整理得;由可得,解得,則.故答案為:.18、(1)(2)或【解析】(1)直接求出圓心的坐標,寫出圓的方程;(2)分斜率存在和斜率不存在進行分類討論,利用幾何法列方程,即可求解.【小問1詳解】由圓心C在直線l:上可設:點,又C也在直線上,∴,∴又圓C的半徑為1,∴圓C的方程為.【小問2詳解】當直線垂直于x軸時,與圓C相切,此時直線方程為.當直線與x軸不垂直時,設過A點的切線方程為,即,則,解得.此時切線方程,.綜上所述,所求切線為或19、(1)(2)(3)【解析】(1)設橢圓的標準方程為,根據(jù)題意,進而結合求解即可得答案;(2)設雙曲線的方程為,進而結合題意得,,再結合解方程即可得答案;、(3)根據(jù)題意設直線的方程為,進而與拋物線聯(lián)立方程并消去得,再結合韋達定理得,進而得答案.【小問1詳解】解:根據(jù)題意,設橢圓的標準方程為,因為頂點為,離心率為,所以,所以,所以橢圓的方程為【小問2詳解】解:因為雙曲線的一個焦點為,設雙曲線的方程為,因為漸近線方程為,所以,因為所以,所以雙曲線的標準方程為【小問3詳解】解:由題知拋物線的焦點為,因為過拋物線焦點斜率為1的直線交拋物線于A、B兩點,所以直線的方程為,所以聯(lián)立方程,消去得,設,所以,因為線段AB的中點的縱坐標為2,所以,解得.所以拋物線的標準方程為.20、(1)V(r)=(300r﹣4r3)(0,5)(2)見解析【解析】(1)先由圓柱的側面積及底面積計算公式計算出側面積及底面積,進而得出總造價,依條件得等式,從中算出,進而可計算,再由可得;(2)通過求導,求出函數(shù)在內的極值點,由導數(shù)的正負確定函數(shù)的單調性,進而得出取得最大值時的值.(1)∵蓄水池的側面積的建造成本為元,底面積成本為元∴蓄水池的總建造成本為元所以即∴∴又由可得故函數(shù)的定義域為(2)由(1)中,可得()令,則∴當時,,函數(shù)為增函數(shù)當,函數(shù)為減函數(shù)所以當時該蓄水池的體積最大考點:1.函數(shù)的應用問題;2.函數(shù)的單調性與導數(shù);2.函數(shù)的最值與導數(shù).21、(1)證明見解析(2)【解析】(1)由線面垂直的判定定理可得平面,再由面面垂直的判定定理可得平面平面;(2)以為坐標原點,以,所在直線分別為,軸,以過點垂直于平面的直線為軸建立空間直角坐標系.求出平面的一個法向量、平面的法向量,由二面角的空間向量求法可得答案.【小問1詳解】因為四邊形是等腰梯形,,所以,所以,即因為平面,所以,又因為,所以平面,因為平面,所以平面平面【小問2詳解】以為坐標原點,以,所在直線分別為,軸,以過點垂直于平面的直線為軸建立如圖所示的空間直角坐標系設,則,所以,,,由(1)可知平面的一個法向量為設平面的法向量為,因為,,所以得令,則,,所以,則,所以平面與平面的夾角的余弦值為.22、(1);(2).【解析】(1)設(且),因為的圖象過點,求得a的值,再根據(jù)函數(shù)f(x)是奇函數(shù),利用f(0)=0即可求得n的值,得到f(x)的解析式,檢驗是奇函數(shù)即可;(2)將分式分離常數(shù)后,利用指數(shù)函數(shù)的性質可以判定f(x)在R上單調遞減,進而結合奇函數(shù)的性質將不等式轉化為二次不等式,根據(jù)二次函數(shù)的圖象和性質,求得對于對任意的恒成立時a的取值范圍即可.【詳解】解:(1)由題意,設(且),因為的圖象過點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 襄陽職業(yè)技術學院《英語:聽力》2023-2024學年第二學期期末試卷
- 西安建筑科技大學《鏡前表演及實踐》2023-2024學年第二學期期末試卷
- 浙江省杭州下城區(qū)重點達標名校2024-2025學年初三1月份階段模擬測試語文試題試卷含解析
- 江西航空職業(yè)技術學院《Python語言程序設計Ⅱ》2023-2024學年第二學期期末試卷
- 南充職業(yè)技術學院《中國地理(二)》2023-2024學年第二學期期末試卷
- 寧夏大學《孫冶方經(jīng)濟科學獎與中國經(jīng)濟發(fā)展》2023-2024學年第二學期期末試卷
- 昆山杜克大學《日語筆譯》2023-2024學年第二學期期末試卷
- 重慶工貿職業(yè)技術學院《生物工程專業(yè)實驗(一)》2023-2024學年第二學期期末試卷
- 吉林省松原市乾安縣七中2025屆普通高中畢業(yè)班3月質量檢查英語試題含解析
- 浙江省紹興實驗學校2025年初三英語試題第三次質量檢測試題試卷含答案
- 小學音樂國測(國家義務教育質量監(jiān)測)復習內容
- 器官移植PPT課件
- 茶藝-認識茶具(課堂PPT)
- 生物藥物監(jiān)測檢測報告.docx
- 鋼絲繩理論重量計算方式
- 第一節(jié)二重積分的概念和性質ppt課件
- 公司重大經(jīng)營決策法律審核管理辦法
- 國家開放大學《計算機應用基礎》終結性考試操作題
- 滸墅關鎮(zhèn)社區(qū)家長學校工作臺帳(模板)
- 電子科技大學自主招生軟件工程碩士招生簡章 —校外培養(yǎng)點
- 安全生產標準化創(chuàng)建工作啟動會(PPT 87頁)
評論
0/150
提交評論