北京東城區(qū)北京匯文中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第1頁
北京東城區(qū)北京匯文中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第2頁
北京東城區(qū)北京匯文中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第3頁
北京東城區(qū)北京匯文中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第4頁
北京東城區(qū)北京匯文中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

北京東城區(qū)北京匯文中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)m,n是兩條不同直線,,是兩個(gè)不同平面,則下列說法錯(cuò)誤的是()A.若,,則; B.若,,則;C.若,,則; D.若,,則2.在等比數(shù)列中,,,則()A. B.或C. D.或3.如圖,在三棱錐S—ABC中,點(diǎn)E,F(xiàn)分別是SA,BC的中點(diǎn),點(diǎn)G在棱EF上,且滿足,若,,,則()A. B.C. D.4.有一個(gè)圓錐形鉛垂,其底面直徑為10cm,母線長為15cm.P是鉛垂底面圓周上一點(diǎn),則關(guān)于下列命題:①鉛垂的側(cè)面積為150cm2;②一只螞蟻從P點(diǎn)出發(fā)沿鉛垂側(cè)面爬行一周、最終又回到P點(diǎn)的最短路徑的長度為cm.其中正確的判斷是()A.①②都正確 B.①正確、②錯(cuò)誤C.①錯(cuò)誤、②正確5.若點(diǎn)在橢圓上,則該橢圓的離心率為()A. B.C. D.6.下列函數(shù)的求導(dǎo)正確的是()A. B.C. D.7.在數(shù)列中,,則等于A. B.C. D.8.某產(chǎn)品的銷售收入(萬元)是產(chǎn)量x(千臺(tái))的函數(shù),且函數(shù)解析式為,生產(chǎn)成本(萬元)是產(chǎn)量x(千臺(tái))的函數(shù),且函數(shù)解析式為,要使利潤最大,則該產(chǎn)品應(yīng)生產(chǎn)()A.6千臺(tái) B.7千臺(tái)C.8千臺(tái) D.9千臺(tái)9.直線在y軸上的截距為()A.-1 B.1C. D.10.若點(diǎn)P為拋物線y=2x2上的動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn),則|PF|的最小值為()A.2 B.C. D.11.若雙曲線的漸近線方程為,則實(shí)數(shù)a的值為()A B.C.2 D.12.已知,是圓上的兩點(diǎn),是直線上一點(diǎn),若存在點(diǎn),,,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的各項(xiàng)均為正數(shù),其前項(xiàng)和滿足,則__________;記表示不超過的最大整數(shù),例如,若,設(shè)的前項(xiàng)和為,則__________14.已知橢圓方程為,左、右焦點(diǎn)分別為、,P為橢圓上的動(dòng)點(diǎn),若的最大值為,則橢圓的離心率為___________.15.已知圓被軸截得的弦長為4,被軸分成兩部分的弧長之比為1∶2,則圓心的軌跡方程為______,若點(diǎn),,則周長的最小值為______16.函數(shù)極值點(diǎn)的個(gè)數(shù)是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)新型冠狀病毒的傳染主要是人與人之間進(jìn)行傳播,感染人群年齡大多數(shù)是歲以上人群.該病毒進(jìn)入人體后有潛伏期.潛伏期是指病原體侵入人體至最早出現(xiàn)臨床癥狀的這段時(shí)間.潛伏期越長,感染到他人的可能性越高.現(xiàn)對(duì)個(gè)病例的潛伏期(單位:天)進(jìn)行調(diào)查,統(tǒng)計(jì)發(fā)現(xiàn)潛伏期平均數(shù)為,方差為.如果認(rèn)為超過天的潛伏期屬于“長潛伏期”,按照年齡統(tǒng)計(jì)樣本,得到下面的列聯(lián)表:年齡/人數(shù)長期潛伏非長期潛伏50歲以上6022050歲及50歲以下4080(1)是否有的把握認(rèn)為“長期潛伏”與年齡有關(guān);(2)假設(shè)潛伏期服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.(i)現(xiàn)在很多省市對(duì)入境旅客一律要求隔離天,請(qǐng)用概率知識(shí)解釋其合理性;(ii)以題目中的樣本頻率估計(jì)概率,設(shè)個(gè)病例中恰有個(gè)屬于“長期潛伏”的概率是,當(dāng)為何值時(shí),取得最大值.附:0.10.050.0102.7063.8416.635若,則,,.18.(12分)如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90°.(I)在平面PAB內(nèi)找一點(diǎn)M,使得直線CM∥平面PBE,并說明理由;(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.19.(12分)如圖是一個(gè)正三棱柱(以為底面)被一平面所截得到的幾何體,截面為ABC.已知,,M為AB中點(diǎn).(1)證明:平面;(2)求此幾何體的體積.20.(12分)已知雙曲線,拋物線的焦點(diǎn)與雙曲線的一個(gè)焦點(diǎn)相同,點(diǎn)為拋物線上一點(diǎn).(1)求雙曲線的焦點(diǎn)坐標(biāo);(2)若點(diǎn)到拋物線的焦點(diǎn)的距離是5,求的值.21.(12分)已知函數(shù)(1)討論的單調(diào)區(qū)間;(2)求在上的最大值.22.(10分)如圖,四棱柱的底面為正方形,平面,,,點(diǎn)在上,且.(1)求證:;(2)求直線與平面所成角的正弦值;(3)求平面與平面夾角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】直接由直線平面的定理得到選項(xiàng)正確;對(duì)于選項(xiàng),m,n可能平行、相交或異面,所以該選項(xiàng)錯(cuò)誤;對(duì)于選項(xiàng),與內(nèi)一直線l,所以,因?yàn)閘為內(nèi)一直線,所以.所以該選項(xiàng)正確.【詳解】對(duì)于選項(xiàng),若,,則,所以該選項(xiàng)正確;對(duì)于選項(xiàng),若,,則,所以該選項(xiàng)正確;對(duì)于選項(xiàng),若,,則m,n可能平行、相交或異面,所以該選項(xiàng)錯(cuò)誤;對(duì)于選項(xiàng),若,,則與內(nèi)一直線l,所以,因?yàn)閘為內(nèi)一直線,所以.所以該選項(xiàng)正確.故選:C【點(diǎn)睛】本題主要考查空間直線平面位置關(guān)系判斷,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.2、C【解析】計(jì)算出等比數(shù)列的公比,即可求得的值.【詳解】設(shè)等比數(shù)列的公比為,則,則,所以,.故選:C.3、D【解析】利用空間向量的加、減運(yùn)算即可求解.詳解】由題意可得故選:D4、C【解析】根據(jù)圓錐的側(cè)面展開圖為扇形,由扇形的面積公式計(jì)算即可判斷①,在展開圖中可知沿著爬行即為最短路徑,計(jì)算即可判斷②.【詳解】直徑為10cm,母線長為15cm.底面圓周長為.將其側(cè)面展開后得到扇形半徑為cm,弧長為,則扇形面積為,①錯(cuò)誤.將其側(cè)面展開,則爬行最短距離為,由弧長公式得展開后扇形弧度數(shù)為,作,,又,,cm,②正確.故選:C5、C【解析】根據(jù)給定條件求出即可計(jì)算橢圓的離心率.【詳解】因點(diǎn)在橢圓,則,解得,而橢圓長半軸長,所以橢圓離心率.故選:C6、B【解析】對(duì)各個(gè)選項(xiàng)進(jìn)行導(dǎo)數(shù)運(yùn)算驗(yàn)證即可.【詳解】,故A錯(cuò)誤;,故B正確;,故C錯(cuò)誤;,故D錯(cuò)誤.故選:B7、D【解析】分析:已知逐一求解詳解:已知逐一求解.故選D點(diǎn)睛:對(duì)于含有的數(shù)列,我們看作擺動(dòng)數(shù)列,往往逐一列舉出來觀察前面有限項(xiàng)的規(guī)律8、A【解析】構(gòu)造利潤函數(shù),求導(dǎo),判斷單調(diào)性,求得最大值處對(duì)應(yīng)的自變量即可.【詳解】設(shè)利潤為y萬元,則,∴.令,解得(舍去)或,經(jīng)檢驗(yàn)知既是函數(shù)的極大值點(diǎn)又是函數(shù)的最大值點(diǎn),∴應(yīng)生產(chǎn)6千臺(tái)該產(chǎn)品.故選:A【點(diǎn)睛】利用導(dǎo)數(shù)求函數(shù)在某區(qū)間上最值的規(guī)律:(1)若函數(shù)在區(qū)間上單調(diào)遞增或遞減,與一個(gè)為最大值,一個(gè)為最小值(2)若函數(shù)在閉區(qū)間上有極值,要先求出上的極值,與,比較,最大的是最大值,最小的是最小值,可列表完成(3)函數(shù)在區(qū)間上有唯一一個(gè)極值點(diǎn),這個(gè)極值點(diǎn)就是最大(或小)值點(diǎn),此結(jié)論在導(dǎo)數(shù)的實(shí)際應(yīng)用中經(jīng)常用到9、A【解析】把直線方程由一般式化成斜截式,即可得到直線在軸上的截距.【詳解】由,可得,則直線在軸上的截距為.故選:A10、D【解析】根據(jù)拋物線的定義得出當(dāng)點(diǎn)P在拋物線的頂點(diǎn)時(shí),|PF|取最小值.【詳解】根據(jù)題意,設(shè)拋物線y=2x2上點(diǎn)P到準(zhǔn)線的距離為d,則有|PF|=d,拋物線的方程為y=2x2,即x2=y(tǒng),其準(zhǔn)線方程為y=-,∴當(dāng)點(diǎn)P在拋物線的頂點(diǎn)時(shí),d有最小值,即|PF|min=.故選:D11、D【解析】由雙曲線的漸近線方程結(jié)合已知可得.【詳解】雙曲線方程為所以漸近線為,故,解得:.故選:D12、B【解析】確定在以為直徑的圓上,,根據(jù)均值不等式得到圓上的點(diǎn)到的最大距離為,得到,解得答案.【詳解】,故在以為直徑的圓上,設(shè)中點(diǎn)為,則,圓上的點(diǎn)到的最大距離為,,當(dāng)時(shí)等號(hào)成立.直線到原點(diǎn)的距離為,故.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、①.;②.60.【解析】先根據(jù)并結(jié)合等差數(shù)列的定義求出;然后討論n的取值范圍,討論出分別取1,2,3,4,5的情況,進(jìn)而求出.【詳解】由題意,,n=1時(shí),,滿足,時(shí),,于是,,因?yàn)?,所?所以,是1為首項(xiàng),2為公差的等差數(shù)列,所以.若,即時(shí),,若,則時(shí),,若,則時(shí),,若,則時(shí),,若,則或22時(shí),,于是,.故答案為:2n-1;60.14、【解析】利用橢圓的定義結(jié)合余弦定理可求得,再利用公式可求得該橢圓的離心率的值.【詳解】由橢圓的定義可得,由余弦定理可得,因?yàn)榈淖畲笾禐椋瑒t,可得,因此,該橢圓的離心率為.故答案為:.15、①.②.【解析】設(shè),圓半徑為,進(jìn)而根據(jù)題意得,,進(jìn)而得其軌跡方程為雙曲線,再根據(jù)雙曲線的定義,將周長轉(zhuǎn)化為求的最小值,進(jìn)而求解.【詳解】解:如圖1,因?yàn)閳A被軸截得的弦長為4,被軸分成兩部分的弧長之比為1∶2,所以,,所以中點(diǎn),則,,所以,故設(shè),圓半徑為,則,,,所以,即所以圓心的軌跡方程為,表示雙曲線,焦點(diǎn)為,,如圖2,連接,由雙曲線的定義得,即,所以周長為,因?yàn)?,所以周長的最小值為故答案為:;.16、0【解析】通過導(dǎo)數(shù)判斷函數(shù)的單調(diào)性即可得極值點(diǎn)的情況.【詳解】因?yàn)?,,所以在上恒成立,所以在上單調(diào)遞增,所以函數(shù)的極值點(diǎn)的個(gè)數(shù)是0,故答案為:0.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)有;(2)(i)答案見解析;(ii)250.【解析】(1)根據(jù)列聯(lián)表中的數(shù)據(jù),利用求得,與臨界表值對(duì)比下結(jié)論;(2)(ⅰ)根據(jù),利用小概率事件判斷;(ⅱ)易得一個(gè)患者屬于“長潛伏期”的概率是,進(jìn)而得到,然后判斷其單調(diào)性求解.【詳解】(1)依題意有,由于,故有的把握認(rèn)為“長期潛伏”與年齡有關(guān);(2)(ⅰ)若潛伏期,由,得知潛伏期超過天的概率很低,因此隔離天是合理的;(ⅱ)由于個(gè)病例中有個(gè)屬于長潛伏期,若以樣本頻率估計(jì)概率,一個(gè)患者屬于“長潛伏期”的概率是,于是,則,,當(dāng)時(shí),;當(dāng)時(shí),;∴,.故當(dāng)時(shí),取得最大值.【點(diǎn)睛】方法點(diǎn)睛:利用獨(dú)立重復(fù)試驗(yàn)概率公式可以簡化求概率的過程,但需要注意檢查該概率模型是否滿足公式的三個(gè)條件:(1)在一次試驗(yàn)中某事件A發(fā)生的概率是一個(gè)常數(shù)p;(2)n次試驗(yàn)不僅是在完全相同的情況下進(jìn)行的重復(fù)試驗(yàn),而且各次試驗(yàn)的結(jié)果是相互獨(dú)立的;(3)該公式表示n次試驗(yàn)中事件A恰好發(fā)生了k次的概率18、(Ⅰ)見解析;(Ⅱ).【解析】本題考查線面平行、線線平行、向量法等基礎(chǔ)知識(shí),考查空間想象能力、分析問題的能力、計(jì)算能力.第一問,利用線面平行的定理,先證明線線平行,再證明線面平行;第二問,可以先找到線面角,再在三角形中解出正弦值,還可以用向量法建立直角坐標(biāo)系解出正弦值.試題解析:(Ⅰ)在梯形ABCD中,AB與CD不平行.延長AB,DC,相交于點(diǎn)M(M∈平面PAB),點(diǎn)M即為所求的一個(gè)點(diǎn).理由如下:由已知,BC∥ED,且BC=ED.所以四邊形BCDE是平行四邊形.從而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(說明:延長AP至點(diǎn)N,使得AP=PN,則所找的點(diǎn)可以是直線MN上任意一點(diǎn))(Ⅱ)方法一:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.從而CD⊥PD.所以PDA是二面角P-CD-A的平面角.所以PDA=45°.設(shè)BC=1,則在Rt△PAD中,PA=AD=2.過點(diǎn)A作AH⊥CE,交CE的延長線于點(diǎn)H,連接PH.易知PA⊥平面ABCD,從而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.過A作AQ⊥PH于Q,則AQ⊥平面PCE.所以APH是PA與平面PCE所成的角.在Rt△AEH中,AEH=45°,AE=1,所以AH=.在Rt△PAH中,PH==,所以sinAPH==.方法二:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.于是CD⊥PD.從而PDA是二面角P-CD-A的平面角.所以PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.設(shè)BC=1,則在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A為原點(diǎn),以,的方向分別為x軸,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,則A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以=(1,0,-2),=(1,1,0),=(0,0,2)設(shè)平面PCE的法向量為n=(x,y,z),由得設(shè)x=2,解得n=(2,-2,1).設(shè)直線PA與平面PCE所成角為α,則sinα==.所以直線PA與平面PCE所成角的正弦值為.考點(diǎn):線線平行、線面平行、向量法.19、(1)證明見解析(2)【解析】(1)取的中點(diǎn),連接,,可得四邊形為平行四邊形,從而可得,然后證明平面,從而可證明.(2)過作截面平面,分別交,于,,連接,作于,由所求幾何體體積為從而可得答案.【小問1詳解】如圖,取的中點(diǎn),連接,,因?yàn)?,分別是,的中點(diǎn).所以且又因?yàn)?,,所以且,故四邊形為平行四邊形,所?因?yàn)檎切危堑闹悬c(diǎn),所以,又因?yàn)槠矫妫?,又,所以平面又,所以平?【小問2詳解】如圖,過作截面平面,分別交,于,,連接,作于,因?yàn)槠矫嫫矫?,所以,結(jié)合直三棱柱的性質(zhì),則平面因?yàn)?,,,所?所以所求幾何體體積為20、(1);(2).【解析】(1)根據(jù)雙曲線的方程求出即得雙曲線的焦點(diǎn)坐標(biāo);(2)先求出的值,再解方程得解.【詳解】(1)因?yàn)殡p曲線的方程為,所以.所以.所以.所以雙曲線的焦點(diǎn)坐標(biāo)分別為.(2)因?yàn)閽佄锞€的焦點(diǎn)與雙曲線的一個(gè)焦點(diǎn)相同,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論