福建省長(zhǎng)泰縣一中2024屆數(shù)學(xué)高二上期末綜合測(cè)試試題含解析_第1頁(yè)
福建省長(zhǎng)泰縣一中2024屆數(shù)學(xué)高二上期末綜合測(cè)試試題含解析_第2頁(yè)
福建省長(zhǎng)泰縣一中2024屆數(shù)學(xué)高二上期末綜合測(cè)試試題含解析_第3頁(yè)
福建省長(zhǎng)泰縣一中2024屆數(shù)學(xué)高二上期末綜合測(cè)試試題含解析_第4頁(yè)
福建省長(zhǎng)泰縣一中2024屆數(shù)學(xué)高二上期末綜合測(cè)試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建省長(zhǎng)泰縣一中2024屆數(shù)學(xué)高二上期末綜合測(cè)試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),則()A.1 B.2C.3 D.52.“﹣3<m<4”是“方程表示橢圓”的()條件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要3.2021年6月17日9時(shí)22分,搭載神舟十二號(hào)載人飛船的長(zhǎng)征二號(hào)F遙十二運(yùn)載火箭,在酒泉衛(wèi)星發(fā)射中心點(diǎn)火發(fā)射.此后,神舟十二號(hào)載人飛船與火箭成功分離,進(jìn)入預(yù)定軌道,并快速完成與“天和”核心艙的對(duì)接,聶海勝、劉伯明、湯洪波3名宇航員成為核心艙首批“入住人員”,并在軌駐留3個(gè)月,開(kāi)展艙外維修維護(hù),設(shè)備更換,科學(xué)應(yīng)用載荷等一系列操作.已知神舟十二號(hào)飛船的運(yùn)行軌道是以地心為焦點(diǎn)的橢圓,設(shè)地球半徑為R,其近地點(diǎn)與地面的距離大約是,遠(yuǎn)地點(diǎn)與地面的距離大約是,則該運(yùn)行軌道(橢圓)的離心率大約是()A. B.C. D.4.拋擲兩枚質(zhì)地均勻的硬幣,設(shè)事件“第一枚硬幣正面朝上”,事件“第二枚硬幣反面朝上”,則下列結(jié)論中正確的為()A.與互為對(duì)立事件 B.與互斥C.與相等 D.5.已知雙曲線:,直線經(jīng)過(guò)點(diǎn),若直線與雙曲線的右支只有一個(gè)交點(diǎn),則直線的斜率的取值范圍是()A. B.C. D.6.和的等差中項(xiàng)與等比中項(xiàng)分別為()A., B.2,C., D.1,7.在圓內(nèi),過(guò)點(diǎn)的最長(zhǎng)弦和最短弦分別是AC和BD,則四邊形ABCD的面積為()A. B.C. D.8.用數(shù)學(xué)歸納法證明“”時(shí),由假設(shè)證明時(shí),不等式左邊需增加的項(xiàng)數(shù)為()A. B.C. D.9.拋物線型太陽(yáng)灶是利用太陽(yáng)能輻射的一種裝置.當(dāng)旋轉(zhuǎn)拋物面的主光軸指向太陽(yáng)的時(shí)候,平行的太陽(yáng)光線入射到旋轉(zhuǎn)拋物面表面,經(jīng)過(guò)反光材料的反射,這些反射光線都從它的焦點(diǎn)處通過(guò),形成太陽(yáng)光線的高密集區(qū),拋物面的焦點(diǎn)在它的主光軸上.如圖所示的太陽(yáng)灶中,灶深CD即焦點(diǎn)到灶底(拋物線的頂點(diǎn))的距離為1m,則灶口直徑AB為()A.2m B.3mC.4m D.5m10.已知兩直線方程分別為l1:x+y=1,l2:ax+2y=0,若l1⊥l2,則a=()A2 B.-2C. D.11.中國(guó)明代商人程大位對(duì)文學(xué)和數(shù)學(xué)頗感興趣,他于60歲時(shí)完成杰作《直指算法統(tǒng)宗》.這是一本風(fēng)行東亞的數(shù)學(xué)名著,該書A.76石 B.77石C.78石 D.79石12.某地為響應(yīng)總書記關(guān)于生態(tài)文明建設(shè)的號(hào)召,大力開(kāi)展“青山綠水”工程,造福于民,擬對(duì)該地某湖泊進(jìn)行治理,在治理前,需測(cè)量該湖泊的相關(guān)數(shù)據(jù).如圖所示,測(cè)得角∠A=23°,∠C=120°,米,則A,B間的直線距離約為(參考數(shù)據(jù))()A.60米 B.120米C.150米 D.300米二、填空題:本題共4小題,每小題5分,共20分。13.用1,2,3,4排成的無(wú)重復(fù)數(shù)字的四位數(shù)中,其中1和2不能相鄰的四位數(shù)的個(gè)數(shù)為_(kāi)__________(用數(shù)字作答).14.已知點(diǎn)在拋物線上,那么點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)的坐標(biāo)為_(kāi)_____15.若無(wú)論實(shí)數(shù)取何值,直線與圓恒有兩個(gè)公共點(diǎn),則實(shí)數(shù)的取值范圍為_(kāi)__________.16.某學(xué)校為了獲得該校全體高中學(xué)生的體有鍛煉情況,按照男、女生的比例分別抽樣調(diào)查了55名男生和45名女生的每周鍛煉時(shí)間,通過(guò)計(jì)算得到男生每周鍛煉時(shí)間的平均數(shù)為8小時(shí),方差為6;女生每周鍛煉時(shí)間的平均數(shù)為6小時(shí),方差為8.根據(jù)所有樣本的方差來(lái)估計(jì)該校學(xué)生每周鍛煉時(shí)間的方差為_(kāi)_______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在正方體中,,,分別是,,的中點(diǎn).(1)證明:平面平面;(2)求直線與所成角的正切值.18.(12分)雙曲線的離心率為2,經(jīng)過(guò)C的焦點(diǎn)垂直于x軸的直線被C所截得的弦長(zhǎng)為12.(1)求C的方程;(2)設(shè)A,B是C上兩點(diǎn),線段AB的中點(diǎn)為,求直線AB的方程.19.(12分)在水平桌面上放一只內(nèi)壁光滑的玻璃水杯,已知水杯內(nèi)壁為拋物面型(拋物面指拋物線繞其對(duì)稱軸旋轉(zhuǎn)所得到的面),拋物面的軸截面是如圖所示的拋物線.現(xiàn)有一些長(zhǎng)短不一、質(zhì)地均勻的細(xì)直金屬棒,其長(zhǎng)度均不小于拋物線通徑的長(zhǎng)度(通徑是過(guò)拋物線焦點(diǎn),且與拋物線的對(duì)稱軸垂直的直線被拋物線截得的弦),若將這些細(xì)直金屬棒,隨意丟入該水杯中,實(shí)驗(yàn)發(fā)現(xiàn):當(dāng)細(xì)棒重心最低時(shí),達(dá)到靜止?fàn)顟B(tài),此時(shí)細(xì)棒交匯于一點(diǎn).(1)請(qǐng)結(jié)合你學(xué)過(guò)的數(shù)學(xué)知識(shí),猜想細(xì)棒交匯點(diǎn)的位置;(2)以玻璃水杯內(nèi)壁軸截面的拋物線頂點(diǎn)為原點(diǎn),建立如圖所示直角坐標(biāo)系.設(shè)玻璃水杯內(nèi)壁軸截面的拋物線方程為,將細(xì)直金屬棒視為拋物線的弦,且弦長(zhǎng)度為,以細(xì)直金屬棒的中點(diǎn)為其重心,請(qǐng)從數(shù)學(xué)角度解釋上述實(shí)驗(yàn)現(xiàn)象.20.(12分)已知橢圓:()的焦點(diǎn)坐標(biāo)為,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍(1)求橢圓的方程;(2)已知直線不過(guò)點(diǎn)且與橢圓交于兩點(diǎn),從下面①②中選取一個(gè)作為條件,證明另一個(gè)成立.①直線的斜率分別為,則;②直線過(guò)定點(diǎn).21.(12分)已知拋物線:的焦點(diǎn)到頂點(diǎn)的距離為.(1)求拋物線的方程;(2)已知過(guò)點(diǎn)的直線交拋物線于不同的兩點(diǎn),,為坐標(biāo)原點(diǎn),設(shè)直線,的斜率分別為,,求的值.22.(10分)如圖,在三棱錐A-BCD中,O為線段BD中點(diǎn),是邊長(zhǎng)為1正三角形,且OA⊥BC,AB=AD(1)證明:平面ABD⊥平面BCD;(2)若|OA|=1,,求平面BCE與平面BCD的夾角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用導(dǎo)數(shù)的定義,以及運(yùn)算法則,即可求解.【詳解】,,所以,所以故選:C2、B【解析】求出方程表示橢圓的充要條件是且,由此可得答案.【詳解】因?yàn)榉匠瘫硎緳E圓的充要條件是,解得且,所以“﹣3<m<4”是“方程表示橢圓”的必要不充分條件.故選:B【點(diǎn)睛】本題考查了由方程表示橢圓求參數(shù)的范圍,考查了充要條件和必要不充分條件,本題易錯(cuò)點(diǎn)警示:漏掉,本題屬于基礎(chǔ)題.3、A【解析】以運(yùn)行軌道長(zhǎng)軸所在直線為x軸,地心F為右焦點(diǎn)建立平面直角坐標(biāo)系,設(shè)橢圓方程為,根據(jù)題意列出方程組,解方程組即可.【詳解】以運(yùn)行軌道長(zhǎng)軸所在直線為x軸,地心F為右焦點(diǎn)建立平面直角坐標(biāo)系,設(shè)橢圓方程為,其中,根據(jù)題意有,,所以,,所以橢圓的離心率故選:A4、D【解析】利用互斥事件和對(duì)立事件的定義分析判斷即可【詳解】因?yàn)閽仈S兩枚質(zhì)地均勻的硬幣包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣正面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上,4種情況,其中事件包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上2種情況,事件包含第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上2種情況,所以與不互斥,也不對(duì)立,也不相等,,所以ABC錯(cuò)誤,D正確,故選:D5、D【解析】以雙曲線的兩條漸近線作為邊界條件,即可保證直線與雙曲線的右支只有一個(gè)交點(diǎn).【詳解】雙曲線:的兩條漸近線為和兩漸近線的傾斜角分別為和由經(jīng)過(guò)點(diǎn)的直線與雙曲線的右支只有一個(gè)交點(diǎn),可知直線的傾斜角取值范圍為,故直線的斜率的取值范圍是故選:D6、C【解析】根據(jù)等差中項(xiàng)和等比中項(xiàng)的概念分別求值即可.【詳解】和的等差中項(xiàng)為,和的等比中項(xiàng)為.故選:C.7、D【解析】由題,求得圓的圓心和半徑,易知最長(zhǎng)弦,最短弦為過(guò)點(diǎn)與垂直的弦,再求得BD的長(zhǎng),可得面積.【詳解】圓化簡(jiǎn)為可得圓心為易知過(guò)點(diǎn)的最長(zhǎng)弦為直徑,即而最短弦為過(guò)與垂直的弦,圓心到的距離:所以弦所以四邊形ABCD的面積:故選:D8、C【解析】當(dāng)成立,寫出左側(cè)的表達(dá)式,當(dāng)時(shí),寫出對(duì)應(yīng)的關(guān)系式,觀察計(jì)算即可【詳解】從到成立時(shí),左邊增加的項(xiàng)為,因此增加的項(xiàng)數(shù)是,故選:C9、C【解析】建立如圖所示的平面直角坐標(biāo)系,設(shè)拋物線的方程為,根據(jù)是拋物線的焦點(diǎn),求得拋物線的方程,進(jìn)而求得的長(zhǎng).【詳解】由題意,建立如圖所示的平面直角坐標(biāo)系,O與C重合,設(shè)拋物線的方程為,由題意可得是拋物線的焦點(diǎn),即,可得,所以拋物線的方程為,當(dāng)時(shí),,所以.故選:C.10、B【解析】直接利用直線垂直公式計(jì)算得到答案.【詳解】因?yàn)閘1⊥l2,所以k1k2=-1,即-=1,解得a=-2.故選:【點(diǎn)睛】本題考查了根據(jù)直線垂直計(jì)算參數(shù),屬于簡(jiǎn)單題.11、C【解析】設(shè)出未知數(shù),列出方程組,求出答案.【詳解】設(shè)甲、乙、丙分得的米數(shù)為x+d,x,x-d,則,解得:d=18,,解得:x=60,所以x+d=60+18=78(石)故選:C12、C【解析】應(yīng)用正弦定理有,結(jié)合已知條件即可求A,B間的直線距離.【詳解】由題設(shè),,在△中,,即,所以米.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用插空法計(jì)算出正確答案.【詳解】先排,形成個(gè)空位,然后將排入,所以符合題意的四位數(shù)的個(gè)數(shù)為.故答案為:14、【解析】由拋物線定義可得,由此可知當(dāng)為與拋物線的交點(diǎn)時(shí),取得最小值,進(jìn)而求得點(diǎn)坐標(biāo).【詳解】由題意得:拋物線焦點(diǎn)為,準(zhǔn)線為作,垂直于準(zhǔn)線,如下圖所示:由拋物線定義知:(當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)取等號(hào))即的最小值為,此時(shí)為與拋物線的交點(diǎn)故答案為【點(diǎn)睛】本題考查拋物線線上的點(diǎn)到焦點(diǎn)的距離與到定點(diǎn)距離之和最小的相關(guān)問(wèn)題的求解,關(guān)鍵是能夠熟練應(yīng)用拋物線定義確定最值取得的位置.15、【解析】根據(jù)點(diǎn)到直線的距離公式得到,根據(jù),解不等式得到答案.【詳解】依題意有圓心到直線的距離,即,又無(wú)論取何值,,故,故.故答案:16、【解析】先求出100名學(xué)生每周鍛煉的平均時(shí)間,然后再求這100名學(xué)生每周鍛煉時(shí)間的方差,從而可估計(jì)該校學(xué)生每周鍛煉時(shí)間的方差【詳解】由題意可得55名男生和45名女生的每周鍛煉時(shí)間的平均數(shù)為小時(shí),因?yàn)?5名男生每周鍛煉時(shí)間的方差為6;45名女生每周鍛煉時(shí)間的方差為8,所以這100名學(xué)生每周鍛煉時(shí)間的方差為,所以該校學(xué)生每周鍛煉時(shí)間的方差約為,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】(1)分別證明∥平面,∥平面,最后利用面面平行的判定定理證明平面∥平面即可;(2)由∥得即為直線與所成角,在直角△即可求解.【小問(wèn)1詳解】∵∥且EN平面MNE,BC平面MNE,∴BC∥平面MNE,又∵∥且EM平面MNE,平面MNE,∴∥平面MNE又∵,∴平面∥平面,【小問(wèn)2詳解】由(1)得∥,∴為直線MN與所成的角,設(shè)正方體的棱長(zhǎng)為a,在△中,,,∴.18、(1)(2)【解析】(1)根據(jù)已知條件求得,由此求得的方程.(2)結(jié)合點(diǎn)差法求得直線的斜率,從而求得直線的方程.【小問(wèn)1詳解】因?yàn)镃的離心率為2,所以,可得.將代入可得,由題設(shè).解得,,,所以C的方程為.【小問(wèn)2詳解】設(shè),,則,.因此,即.因?yàn)榫€段AB的中點(diǎn)為,所以,,從而,于是直線AB的方程是.19、(1)拋物線的焦點(diǎn)或拋物面的焦點(diǎn)(2)答案見(jiàn)解析【解析】(1)結(jié)合通徑的特點(diǎn)可猜想得到結(jié)果;(2)將問(wèn)題轉(zhuǎn)化為當(dāng)時(shí),只要過(guò)點(diǎn),則中點(diǎn)到的距離最小,根據(jù),結(jié)合拋物線定義可得結(jié)論.【小問(wèn)1詳解】根據(jù)通徑的特征,知通徑會(huì)經(jīng)過(guò)拋物線的焦點(diǎn)達(dá)到靜止?fàn)顟B(tài),則可猜想細(xì)棒交匯點(diǎn)位置為:拋物線焦點(diǎn)或拋物面的焦點(diǎn).【小問(wèn)2詳解】解釋上述現(xiàn)象,即證:當(dāng)(為拋物線通徑)時(shí),只要過(guò)點(diǎn),則中點(diǎn)到的距離最小;如圖所示,記點(diǎn)在拋物線準(zhǔn)線上的射影分別是,,由拋物線定義知:,當(dāng)過(guò)拋物線焦點(diǎn)時(shí),點(diǎn)到準(zhǔn)線距離取得最小值,最小值為的一半,此時(shí)點(diǎn)到軸距離最小.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查拋物線的實(shí)際應(yīng)用問(wèn)題,解題關(guān)鍵是能夠?qū)?wèn)題轉(zhuǎn)化為拋物線焦點(diǎn)弦的中點(diǎn)到軸距離最小問(wèn)題的證明,通過(guò)拋物線的定義可證得結(jié)論.20、(1)(2)證明見(jiàn)解析【解析】(1)由條件可得,解出即可;(2)選①證②,當(dāng)直線的斜率存在時(shí),設(shè):,,然后聯(lián)立直線與橢圓的方程消元,然后韋達(dá)定理可得,,然后由可算出,即可證明,選②證①,設(shè):,,然后聯(lián)立直線與橢圓的方程消元,然后韋達(dá)定理可得,,然后可算出.【小問(wèn)1詳解】由條件可得,解得所以橢圓方程為【小問(wèn)2詳解】選①證②:當(dāng)直線的斜率存在時(shí),設(shè):,由得,則,由得即,即所以代入所以所以解得:(舍去),所以直線過(guò)定點(diǎn)當(dāng)直線斜率不存在時(shí),設(shè):所以,由得所以,即,解得所以直線(不符合題意,舍去)綜上:直線過(guò)定點(diǎn)選②證①:由題意直線的斜率存在,設(shè):由得則,所以.21、(1)(2)【解析】(1)由拋物線的幾何性質(zhì)有焦點(diǎn)到頂點(diǎn)的距離為,從而即可求解;(2)當(dāng)直線的斜率不存在時(shí),不符

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論