安徽省蕪湖一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
安徽省蕪湖一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
安徽省蕪湖一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
安徽省蕪湖一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
安徽省蕪湖一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

安徽省蕪湖一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列的公比為正數(shù),且,,則()A.4 B.2C.1 D.2.已知圓的圓心到直線的距離為,則圓與圓的位置關(guān)系是()A.相交 B.內(nèi)切C.外切 D.外離3.已知等比數(shù)列的首項為1,公比為2,則=()A. B.C. D.4.雙曲線的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線上,下列結(jié)論不正確的是()A.該雙曲線的離心率為B.該雙曲線的漸近線方程為C.點(diǎn)P到兩漸近線的距離的乘積為D.若PF1⊥PF2,則△PF1F2的面積為325.胡蘿卜中含有大量的胡蘿卜素,攝入人體消化器官后,可以轉(zhuǎn)化為維生素,現(xiàn)從,兩個品種的胡蘿卜所含的胡蘿卜素(單位:)得到莖葉圖如圖所示,則下列說法不正確的是A. B.的方差大于的方差C.品種的眾數(shù)為 D.品種的中位數(shù)為6.19世紀(jì)法國著名數(shù)學(xué)家加斯帕爾·蒙日,創(chuàng)立了畫法幾何學(xué),推動了空間幾何學(xué)的獨(dú)立發(fā)展,提出了著名的蒙日圓定理:橢圓的兩條切線互相垂直,則切線的交點(diǎn)位于一個與橢圓同心的圓上,稱為蒙日圓,且該圓的半徑等于橢圓長半軸長與短半軸長的平方和的算術(shù)平方根.若圓與橢圓的蒙日圓有且僅有一個公共點(diǎn),則b的值為()A. B.C. D.7.正方體的棱長為2,E,F(xiàn),G分別為,AB,的中點(diǎn),則直線ED與FG所成角的余弦值為()A. B.C. D.8.如圖,橢圓的右焦點(diǎn)為,過與軸垂直的直線交橢圓于第一象限的點(diǎn),點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對稱點(diǎn)為,且,,則橢圓方程為()A. B.C. D.9.為迎接第24屆冬季奧運(yùn)會,某校安排甲、乙、丙、丁、戊共5名學(xué)生擔(dān)任冰球、冰壺和短道速滑三個項目的志愿者,每個比賽項目至少安排1人,每人只能安排到1個項目,則所有排法的總數(shù)為()A.60 B.120C.150 D.24010.已知雙曲線的離心率為2,則C的漸近線方程為()A. B.C. D.11.若圓的半徑為,則實數(shù)()A. B.-1C.1 D.12.我國的刺繡有著悠久的歷史,如圖,(1)(2)(3)(4)為刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形個數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個圖形包含個小正方形,則的表達(dá)式為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,一個酒杯的內(nèi)壁的軸截面是拋物線的一部分,杯口寬cm,杯深8cm,稱為拋物線酒杯.①在杯口放一個表面積為的玻璃球,則球面上的點(diǎn)到杯底的最小距離為______cm;②在杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,則玻璃球的半徑的取值范圍為______(單位:cm)14.寫出一個同時滿足下列條件①②③的圓C的標(biāo)準(zhǔn)方程:__________①圓C的圓心在第一象限;②圓C與x軸相切;③圓C與圓外切15.已知拋物線,則的準(zhǔn)線方程為______.16.設(shè)拋物線的準(zhǔn)線方程為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的標(biāo)準(zhǔn)方程為:,若右焦點(diǎn)為且離心率為(1)求橢圓的方程;(2)設(shè),是上的兩點(diǎn),直線與曲線相切且,,三點(diǎn)共線,求線段的長18.(12分)已知數(shù)列的前項和為,且,(1)求的通項公式;(2)求的最小值19.(12分)在平面直角坐標(biāo)系中,已知橢圓的焦點(diǎn)為,且過點(diǎn),橢圓的上、下頂點(diǎn)分別為,右頂點(diǎn)為,直線過點(diǎn)且垂直于軸(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若點(diǎn)在橢圓上(且在第一象限),直線與交于點(diǎn),直線與軸交于點(diǎn),試問:是否為定值?若是,請求出定值;若不是,請說明理由20.(12分)已知函數(shù),且在處取得極值.(1)求的值;(2)當(dāng),求的最小值.21.(12分)如圖,在三棱錐P-ABC中,△ABC是以AC為底的等腰直角三角形,PA=PB=PC=AC=4,O為AC的中點(diǎn).(1)證明:PO⊥平面ABC;(2)若點(diǎn)M在棱BC上,且,求平面MAP與平面CAP所成角的大小.22.(10分)已知等差數(shù)列的前項和為,滿足,.(1)求數(shù)列的通項公式與前項和;(2)求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設(shè)等比數(shù)列的公比為(),則由已知條件列方程組可求出【詳解】設(shè)等比數(shù)列的公比為(),由題意得,且,即,,因為,所以,,故選:D2、B【解析】求出兩圓的圓心與半徑,根據(jù)兩圓的位置關(guān)系的判定即可求解.【詳解】已知圓的圓心到直線的距離,即,解得或,因為,所以,圓的圓心的坐標(biāo)為,半徑,將圓化為標(biāo)準(zhǔn)方程為,其圓心的坐標(biāo)為,半徑,圓心距,兩圓內(nèi)切,故選:B3、D【解析】數(shù)列是首項為1,公比為4的等比數(shù)列,然后可算出答案.【詳解】因為等比數(shù)列的首項為1,公比為2,所以數(shù)列是首項為1,公比為4的等比數(shù)列所以故選:D4、D【解析】根據(jù)雙曲線的離心率、漸近線、點(diǎn)到直線距離公式、三角形的面積等知識來確定正確答案.【詳解】由題意可知,a=3,b=4,c=5,,故離心率e,故A正確;由雙曲線的性質(zhì)可知,雙曲線線的漸近線方程為y=±x,故B正確;設(shè)P(x,y),則P到兩漸近線的距離之積為,故C正確;若PF1⊥PF2,則△PF1F2是直角三角形,由勾股定理得,由雙曲線的定義可得|PF1|﹣|PF2|=2a=6(不妨取P在第一象限),∴2|PF1||PF2|=100﹣2|PF1||PF2|,解得|PF1||PF2|=32,可得,故D錯誤.故選:D5、C【解析】讀懂莖葉圖,分別計算出眾數(shù)、中位數(shù)、方差,然后對各選項進(jìn)行判斷【詳解】由莖葉圖知,品種所含胡蘿卜素普遍高于品種,所以,故A正確;品種的數(shù)據(jù)波動比品種的數(shù)據(jù)波動大,所以的方差大于的方差,故B正確;品種的眾數(shù)為與,故C錯誤;品種的數(shù)據(jù)的中位數(shù)為,故D正確.故選.【點(diǎn)睛】本題主要考查了對數(shù)據(jù)的分析,首先要讀懂莖葉圖,然后計算出眾數(shù)、中位數(shù)、方差,即可對各選項進(jìn)行判斷,較為基礎(chǔ)6、B【解析】由題意求出蒙日圓方程,再由兩圓只有一個交點(diǎn)可知兩圓相切,從而列方程可求出b的值【詳解】由題意可得橢圓的蒙日圓的半徑,所以蒙日圓方程為,因為圓與橢圓的蒙日圓有且僅有一個公共點(diǎn),所以兩圓相切,所以,解得,故選:B7、B【解析】建立空間直角坐標(biāo)系,利用空間向量坐標(biāo)運(yùn)算即可求解.【詳解】如圖所示建立適當(dāng)空間直角坐標(biāo)系,故選:B8、C【解析】連結(jié),設(shè),則,,由可求出,進(jìn)而可求出,得出橢圓方程.【詳解】由題意設(shè)橢圓的方程:,設(shè)左焦點(diǎn)為,連結(jié),由橢圓的對稱性易得四邊形為平行四邊形,由得,又,設(shè),則,,又,解得,又由,,解得,,,則橢圓的方程為.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查了橢圓的標(biāo)準(zhǔn)方程求解及橢圓的簡單幾何性質(zhì),在求解橢圓標(biāo)準(zhǔn)方程時,關(guān)鍵是求解基本量,,.9、C【解析】結(jié)合排列組合的知識,分兩種情況求解.【詳解】當(dāng)分組為1人,1人,3人時,有種,當(dāng)分組為1人,2人,2人時有種,所以共有種排法.故選:C10、A【解析】根據(jù)離心率及a,b,c的關(guān)系,可求得,代入即可得答案.【詳解】因為離心率,所以,所以,,則,所以C的漸近線方程為.故選:A11、B【解析】將圓的方程化為標(biāo)準(zhǔn)方程,即可求出半徑的表達(dá)式,從而可求出的值.【詳解】由題意,圓的方程可化為,所以半徑為,解得.故選:B.【點(diǎn)睛】本題考查圓的方程,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.12、D【解析】先分別觀察給出正方體的個數(shù)為:1,,,,總結(jié)一般性的規(guī)律,將一般性的數(shù)列轉(zhuǎn)化為特殊的數(shù)列再求解【詳解】解:根據(jù)前面四個發(fā)現(xiàn)規(guī)律:,,,,,累加得:,,故選:【點(diǎn)睛】本題主要考查了歸納推理,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】根據(jù)題意,,進(jìn)而得,,故最小距離為;進(jìn)而建立坐標(biāo)系,得拋物線方程為,當(dāng)杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,此時設(shè)玻璃球軸截面所在圓的方程為,進(jìn)而只需滿足拋物線上的點(diǎn)到圓心的距離大于等于半徑恒成立,再根據(jù)幾何關(guān)系求解即可.【詳解】因為杯口放一個表面積為的玻璃球,所以球的半徑為,又因為杯口寬cm,所以如圖1所示,有,所以,所以,所以,又因為杯深8cm,即故最小距離為如圖1所示,建立直角坐標(biāo)系,易知,設(shè)拋物線的方程為,所以將代入得,故拋物線方程為,當(dāng)杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,如圖2,設(shè)玻璃球軸截面所在圓的方程為,依題意,需滿足拋物線上的點(diǎn)到圓心的距離大于等于半徑恒成立,即,則有恒成立,解得,可得.所以玻璃球的半徑的取值范圍為.故答案為:;【點(diǎn)睛】本題考查拋物線的應(yīng)用,考查數(shù)學(xué)建模能力,運(yùn)算求解能力,是中檔題.本題第二問解題的關(guān)鍵在于設(shè)出球觸及酒杯底部的軸截面圓的方程,進(jìn)而將問題轉(zhuǎn)化為拋物線上的點(diǎn)到圓心的距離大于等于半徑恒成立求解.14、(答案不唯一,但圓心坐標(biāo)需滿足,)【解析】首先設(shè)圓的圓心和半徑,根據(jù)條件得到關(guān)于的方程組,即可求解.【詳解】設(shè)圓心坐標(biāo)為,由①可知,半徑為,由②③可知,整理可得,當(dāng)時,,,所以其中一個同時滿足條件①②③的圓的標(biāo)準(zhǔn)方程是.故答案為:(答案不唯一,但圓心坐標(biāo)需滿足,)15、##【解析】根據(jù)拋物線的方程求出的值即得解.【詳解】解:因為拋物線,所以,所以的準(zhǔn)線方程為.故答案為:16、【解析】由題意結(jié)合拋物線的標(biāo)準(zhǔn)方程確定其準(zhǔn)線方程即可.【詳解】由拋物線方程可得,則,故準(zhǔn)線方程為.故答案為【點(diǎn)睛】本題主要考查由拋物線方程確定其準(zhǔn)線方法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)橢圓的焦點(diǎn)、離心率求橢圓參數(shù),寫出橢圓方程即可.(2)由(1)知曲線為,討論直線的存在性,設(shè)直線方程聯(lián)立橢圓方程并應(yīng)用韋達(dá)定理求弦長即可.【詳解】(1)由題意,橢圓半焦距且,則,又,∴橢圓方程為;(2)由(1)得,曲線為當(dāng)直線的斜率不存在時,直線,不合題意:當(dāng)直線的斜率存在時,設(shè),又,,三點(diǎn)共線,可設(shè)直線,即,由直線與曲線相切可得,解得,聯(lián)立,得,則,,∴.18、(1)(2)【解析】(1)由可求得的值,由可求得數(shù)列的通項公式;(2)求得,利用二次函數(shù)的基本性質(zhì)可求得的最小值.【小問1詳解】解:由題意可得,解得,所以,.當(dāng)時,,當(dāng)時,,也滿足,故對任意的,.【小問2詳解】解:,所以,當(dāng)或時,取得最小值,且最小值為.19、(1)(2)為定值,該定值為2【解析】(1)先根據(jù)焦點(diǎn)形式設(shè)出橢圓方程和焦距,根據(jù)橢圓經(jīng)過和半焦距為3易得橢圓的標(biāo)準(zhǔn)方程;(2)設(shè),分別表示出直線方程,進(jìn)而求得點(diǎn)的縱坐標(biāo),點(diǎn)橫坐標(biāo),即可表示出,即可求得答案【小問1詳解】由焦點(diǎn)坐標(biāo)可知,橢圓的焦點(diǎn)在軸上,所以設(shè)橢圓:,焦距為,因為橢圓經(jīng)過點(diǎn),焦點(diǎn)為所以,,解得,所以橢圓的標(biāo)準(zhǔn)方程為;【小問2詳解】設(shè),由橢圓的方程可知,因為,則直線,由已知得,直線斜率均存在,則直線,令得,直線,令得,因為點(diǎn)在第一象限,所以,,則,又因為,即,所以所以為定值,該定值為2.20、(1);(2).【解析】(1)對函數(shù)求導(dǎo),則極值點(diǎn)為導(dǎo)函數(shù)的零點(diǎn),進(jìn)而建立方程組解出a,b,然后討論函數(shù)的單調(diào)區(qū)間進(jìn)行驗證,最后確定答案;(2)根據(jù)(1)得到函數(shù)在上的單調(diào)區(qū)間,進(jìn)而求出最小值.【小問1詳解】,因為在處取得極值,所以,則,所以時,,單調(diào)遞減,時,,單調(diào)遞增,時,,單調(diào)遞減,故為函數(shù)的極值點(diǎn).于是.【小問2詳解】結(jié)合(1)可知,在上單調(diào)遞減,在上單調(diào)遞增,在單調(diào)遞減,而,所以.因為,所以.綜上:的最小值為.21、(1)證明見解析(2)【解析】(1)接BO,由是等邊三角形得,由得出,再利用線面垂直的判斷定理可得平面;(2)建立以為坐標(biāo)原點(diǎn),分別為軸的空間直角坐標(biāo)系,求出平面的法向量、平面的法向量,利用二面角的向量求法可得答案.【小問1詳解】連接BO,由已知△ABC是以AC為底的等腰直角三角形,且PA=PB=PC=AC=4,O為AC的中點(diǎn),則是等邊三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論