版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省六安市舒城中學(xué)仁英班2024屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知經(jīng)過兩點(diǎn)(5,m)和(m,8)的直線的斜率等于1,則m的值為()A.5 B.8C. D.72.已知,則下列說法錯(cuò)誤的是()A.若,分別是直線,的方向向量,則直線,所成的角的余弦值是B.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是C.若,分別是平面,的法向量,則平面,所成的角的余弦值是D.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是3.雙曲線的焦點(diǎn)到漸近線的距離為()A.1 B.2C. D.4.圓和圓的位置關(guān)系是()A.內(nèi)含 B.內(nèi)切C.相交 D.外離5.已知點(diǎn)到直線的距離為1,則m的值為()A.或 B.或15C.5或 D.5或156.已知圓,圓,M,N分別是圓上的動(dòng)點(diǎn),P為x軸上的動(dòng)點(diǎn),則以的最小值為()A B.C. D.7.已知橢圓的左、右焦點(diǎn)分別為,為軸上一點(diǎn),為正三角形,若,的中點(diǎn)恰好在橢圓上,則橢圓的離心率是()A. B.C. D.8.已知,則下列三個(gè)數(shù),,()A.都不大于-4 B.至少有一個(gè)不大于-4C.都不小于-4 D.至少有一個(gè)不小于-49.下列各式正確的是()A. B.C. D.10.已知雙曲線的左右焦點(diǎn)分別是和,點(diǎn)關(guān)于漸近線的對(duì)稱點(diǎn)恰好落在圓上,則雙曲線的離心率為()A. B.2C. D.311.拋物線的準(zhǔn)線方程是A. B.C. D.12.已知p、q是兩個(gè)命題,若“(¬p)∨q”是假命題,則()A.p、q都是假命題 B.p、q都是真命題C.p是假命題q是真命題 D.p是真命題q是假命題二、填空題:本題共4小題,每小題5分,共20分。13.已知滿足的雙曲線(a,b>0,c為半焦距)為黃金雙曲線,則黃金雙曲線的離心率為______14.在平面直角坐標(biāo)系中,直線與的交點(diǎn)為,以為圓心作圓,圓上的點(diǎn)到軸的最小距離為(Ⅰ)求圓的標(biāo)準(zhǔn)方程;(Ⅱ)過點(diǎn)作圓的切線,求切線的方程15.已知,,且,則的值是_________.16.已知橢圓的左、右焦點(diǎn)分別為,,過點(diǎn)的直線與橢圓交于A,B兩點(diǎn),線段AB的長為5,若,那么△的周長是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)討論的單調(diào)性;(2)當(dāng)有最大值,且最大值大于時(shí),求取值范圍.18.(12分)在平面直角坐標(biāo)系中,已知.(1)求直線的方程;(2)平面內(nèi)的動(dòng)點(diǎn)滿足,到點(diǎn)與點(diǎn)距離的平方和為24,求動(dòng)點(diǎn)的軌跡方程.19.(12分)如圖長方體中,,,點(diǎn)為的中點(diǎn).(1)求證:平面;(2)求證:平面;(3)求二面角的余弦值.20.(12分)已知命題:“曲線表示焦點(diǎn)在軸上的橢圓”,命題:“曲線表示雙曲線”.(1)若是真命題,求實(shí)數(shù)的取值范圍;(2)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.21.(12分)已知關(guān)于x的不等式,.(1)若,求不等式的解集;(2)若不等式的解集為R,求k的取值范圍.22.(10分)已知函數(shù).(1)討論函數(shù)的單調(diào)性;(2)若恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)斜率的公式直接求解即可.【詳解】由題可知,,解得.故選:C【點(diǎn)睛】本題主要考查了兩點(diǎn)間斜率的計(jì)算公式,屬于基礎(chǔ)題.2、D【解析】利用空間角的意義結(jié)合空間向量求空間角的方法逐一分析各選項(xiàng)即可判斷作答.【詳解】對(duì)于A,因分別是直線的方向向量,且,直線所成的角為,則,A正確;對(duì)于B,D,因分別是直線l的方向向量與平面的法向量,且,直線l與平面所成的角為,則有,B正確,D錯(cuò)誤;對(duì)于C,因分別是平面的法向量,且,平面所成的角為,則不大于,,C正確.故選:D3、A【解析】分別求出雙曲線的焦點(diǎn)坐標(biāo)和漸近線方程,利用點(diǎn)到直線的距離公式求出結(jié)果【詳解】雙曲線中,焦點(diǎn)坐標(biāo)為漸近線方程為:∴雙曲線的焦點(diǎn)到漸近線的距離故選:A4、C【解析】根據(jù)兩圓圓心的距離與兩圓半徑和差的大小關(guān)系即可判斷.【詳解】解:因?yàn)閳A的圓心為,半徑為,圓的圓心為,半徑為,所以兩圓圓心的距離為,因?yàn)椋?,所以圓和圓的位置關(guān)系是相交,故選:C.5、D【解析】利用點(diǎn)到直線距離公式即可得出.【詳解】解:點(diǎn)到直線的距離為1,解得:m=15或5故選:D.6、A【解析】求出圓關(guān)于軸的對(duì)稱圓的圓心坐標(biāo),以及半徑,然后求解圓與圓的圓心距減去兩個(gè)圓的半徑和,即可求出的最小值.【詳解】圓關(guān)于軸對(duì)稱圓的圓心坐標(biāo),半徑為1,圓的圓心坐標(biāo)為,半徑為3,易知,當(dāng)三點(diǎn)共線時(shí),取得最小值,的最小值為圓與圓的圓心距減去兩個(gè)圓的半徑和,即:.故選:A.注意:9至12題為多選題7、A【解析】根據(jù)題意得,取線段的中點(diǎn),則根據(jù)題意得,,根據(jù)橢圓的定義可知,然后解出離心率的值.【詳解】因?yàn)闉檎切?,所以,取線段的中點(diǎn),連結(jié),則,所以,得,所以橢圓的離心率.故選:A.【點(diǎn)睛】求解離心率及其范圍的問題時(shí),解題的關(guān)鍵在于畫出圖形,根據(jù)題目中的幾何條件列出關(guān)于,,的齊次式,然后得到關(guān)于離心率的方程或不等式求解8、B【解析】利用反證法設(shè),,都大于,結(jié)合基本不等式即可得出結(jié)論.【詳解】設(shè),,都大于,則,由于,故,利用基本不等式可得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,這與假設(shè)所得結(jié)論矛盾,故假設(shè)不成立,故下列三個(gè)數(shù),,至少有一個(gè)不大于,故選:B.9、C【解析】利用導(dǎo)數(shù)的四則運(yùn)算即可求解.【詳解】對(duì)于A,,故A錯(cuò)誤;對(duì)于B,,故B錯(cuò)誤;對(duì)于C,,故C正確;對(duì)于D,,故D錯(cuò)誤;故選:C10、B【解析】首先求出F1到漸近線的距離,利用F1關(guān)于漸近線的對(duì)稱點(diǎn)恰落在圓上,可得直角三角形,利用勾股定理得到關(guān)于ac的齊次式,即可求出雙曲線的離心率【詳解】由題意可設(shè),則到漸近線的距離為.設(shè)關(guān)于漸近線的對(duì)稱點(diǎn)為M,F1M與漸近線交于A,∴MF1=2b,A為F1M的中點(diǎn).又O是F1P的中點(diǎn),∴OA∥F2M,∴為直角,所以△為直角三角形,由勾股定理得:,所以,所以,所以離心率故選:B.11、C【解析】根據(jù)拋物線的概念,可得準(zhǔn)線方程為12、D【解析】由已知可得¬p,q都是假命題,從而可分析判斷各選項(xiàng)【詳解】∵“(¬p)∨q”是假命題,∴¬p,q都是假命題,∴p真,q假,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)題設(shè)及雙曲線離心率公式可得,結(jié)合雙曲線離心率的性質(zhì)即可求離心率.【詳解】由題設(shè),,整理得:,所以,而,故.故答案為:.14、(Ⅰ);(Ⅱ)或【解析】(Ⅰ)求出點(diǎn)的坐標(biāo),設(shè)圓的半徑為,圓上的點(diǎn)到軸的最小距離為1求得的值,由此可得出圓的標(biāo)準(zhǔn)方程;(Ⅱ)對(duì)切線的斜率是否存在進(jìn)行分類討論,當(dāng)切線的斜率不存在時(shí),可得切線方程為,驗(yàn)證即可;當(dāng)切線的斜率存在時(shí),可設(shè)所求切線的方程為,利用圓心到切線的距離等于圓的半徑可求得的值,綜合可得出所求切線的方程.【詳解】(Ⅰ)聯(lián)立方程組,解得,即點(diǎn)設(shè)圓的半徑為,由于圓上的點(diǎn)到軸的最小距離為,則,所以,故圓的標(biāo)準(zhǔn)方程為;(Ⅱ)若切線的斜率不存在,則所求切線的方程為,圓心到直線的距離為,不合乎題意;若切線的斜率存在,可設(shè)切線的方程為,即,圓的圓心坐標(biāo)為,半徑為,由題意可得,整理得,解得或故所求切線方程為或【點(diǎn)睛】本題考查圓的標(biāo)準(zhǔn)方程的求解,同時(shí)也考查了過圓外一點(diǎn)的圓的切線方程的求解,考查計(jì)算能力,屬于中等題.15、【解析】根據(jù)空間向量可得,結(jié)合計(jì)算即可.【詳解】由題意知,,所以,解得.故答案:316、16【解析】利用橢圓的定義可知,又△的周長,即可求焦點(diǎn)三角形的周長.【詳解】由橢圓定義知:,所以△的周長為.故答案為:16.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)時(shí),在是單調(diào)遞增;時(shí),在單調(diào)遞增,在單調(diào)遞減.(2).【解析】(Ⅰ)由,可分,兩種情況來討論;(II)由(I)知當(dāng)時(shí)在無最大值,當(dāng)時(shí)最大值為因此.令,則在是增函數(shù),當(dāng)時(shí),,當(dāng)時(shí),因此a的取值范圍是.試題解析:(Ⅰ)的定義域?yàn)?,若,則,在是單調(diào)遞增;若,則當(dāng)時(shí),當(dāng)時(shí),所以在單調(diào)遞增,在單調(diào)遞減.(Ⅱ)由(Ⅰ)知當(dāng)時(shí)在無最大值,當(dāng)時(shí)在取得最大值,最大值為因此.令,則在是增函數(shù),,于是,當(dāng)時(shí),,當(dāng)時(shí),因此a取值范圍是.考點(diǎn):本題主要考查導(dǎo)數(shù)在研究函數(shù)性質(zhì)方面的應(yīng)用及分類討論思想.18、(1)(2)【解析】(1)結(jié)合點(diǎn)斜式求得直線的方程.(2)設(shè),根據(jù)已知條件列方程,化簡(jiǎn)求得的軌跡方程.【小問1詳解】,于是直線的方程為,即【小問2詳解】設(shè)動(dòng)點(diǎn),于是,代入坐標(biāo)得,化簡(jiǎn)得,于是動(dòng)點(diǎn)的軌跡方程為19、(1)見解析(2)見解析(3)【解析】(1)作輔助線,由中位線定理證明,再由線面平行的判定定理證明即可;(2)連接,由勾股定理證明,,再結(jié)合線面垂直的判定定理證明即可;(3)建立空間直角坐標(biāo)系,利用向量法求面面角的余弦值即可.【詳解】(1)連接交與點(diǎn),連接四邊形為正方形,點(diǎn)為的中點(diǎn)又點(diǎn)為的中點(diǎn),平面,平面平面(2)連接由勾股定理可知,,則同理可證,平面平面(3)建立如下圖所示的空間直角坐標(biāo)系顯然平面的法向量即為平面的法向量,不妨設(shè)為由(2)可知平面,即平面的法向量為又二面角是鈍角二面角的余弦值為【點(diǎn)睛】關(guān)鍵點(diǎn)睛:在第一問中,關(guān)鍵是利用中位線定理找到線線平行,再由定義證明線面平行;在第二問中,關(guān)鍵是利用勾股定理證明線線垂直,從而得出線面垂直;在第三問中,關(guān)鍵是建立坐標(biāo)系,利用向量法求面面角的余弦值.20、(1);(2).【解析】(1)根據(jù)方程為焦點(diǎn)在軸上的橢圓的條件列不等式組,解不等式組求得的取值范圍.(2)求得為真命題時(shí)的取值范圍,結(jié)合是的必要不充分條件列不等式組,解不等式組求得的取值范圍.【詳解】(1)若是真命題,所以,解得,所以的取值范圍是.(2)由(1)得,是真命題時(shí),的取值范圍是,為真命題時(shí),,所以的取值范圍是因?yàn)槭堑谋匾怀浞謼l件,所以,所以,等號(hào)不同時(shí)取得,所以【點(diǎn)睛】本小題主要考查橢圓、雙曲線,考查必要不充分條件求參數(shù).21、(1)(2)【解析】(1)因式分解后可求不等式的解集.(2)就分類討論后可得的取值范圍.【小問1詳解】時(shí),原不等式即為,其解為.【小問2詳解】不等式的解集為R,當(dāng)時(shí),則有,解得,綜上,.22、(1)當(dāng)時(shí),上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(2)【解析】(1)先求函數(shù)的定義
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 化學(xué)初中說課稿
- 好朋友起玩說課稿
- 治療糖尿病周圍神經(jīng)病變
- 臨時(shí)行政主管
- 學(xué)校園區(qū)噴泉施工合同
- 精密儀器公司法務(wù)聘用合同
- 體育場(chǎng)館隔離墻安裝合同
- 市政排水工程級(jí)配碎石施工合同
- 綠色制造車間環(huán)保操作規(guī)程
- 2022年大學(xué)林業(yè)工程專業(yè)大學(xué)物理下冊(cè)期中考試試題B卷-附解析
- 《中風(fēng)的中醫(yī)治療》PPT課件.ppt
- 防火門窗施工方案
- “雙師教學(xué)”在初中數(shù)學(xué)課堂中的應(yīng)用
- 戰(zhàn)略合作簽約儀式教育PPT課程課件
- 土方填筑碾壓試驗(yàn)報(bào)告
- 老舊小區(qū)排水部分雨污水改造監(jiān)理細(xì)則
- 2022年地殼運(yùn)動(dòng)與變化教案與學(xué)案
- 《建筑起重吊裝工程安全技術(shù)規(guī)程》JGJ276
- 市政道路水穩(wěn)層項(xiàng)目施工合同
- 睿丁英語小紅帽和大灰狼的故事
- 轉(zhuǎn)人教版七年級(jí)上期中復(fù)習(xí)教案
評(píng)論
0/150
提交評(píng)論