貴州省黔西南布依族苗族自治州興義市第八中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第1頁
貴州省黔西南布依族苗族自治州興義市第八中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第2頁
貴州省黔西南布依族苗族自治州興義市第八中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第3頁
貴州省黔西南布依族苗族自治州興義市第八中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第4頁
貴州省黔西南布依族苗族自治州興義市第八中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

貴州省黔西南布依族苗族自治州興義市第八中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線l經(jīng)過兩條直線和的交點,且平行于直線,則直線l的方程為()A. B.C. D.2.若等比數(shù)列滿足,,則數(shù)列的公比為()A. B.C. D.3.已知{an}是以10為首項,-3為公差的等差數(shù)列,則當(dāng){an}的前n項和Sn,取得最大值時,n=()A.3 B.4C.5 D.64.已知a,b為正數(shù),,則下列不等式一定成立的是()A. B.C. D.5.如圖,在長方體中,若,,則異面直線和所成角的余弦值為()A. B.C. D.6.在平面直角坐標(biāo)系中,雙曲線的右焦點為,過雙曲線上一點作軸的垂線足為,若,則該雙曲線的離心率為()A. B.C. D.7.命題的否定是()A. B.C. D.8.已知數(shù)列是等比數(shù)列,,是函數(shù)的兩個不同零點,則()A.16 B.C.14 D.9.已知公差不為0的等差數(shù)列中,,且,,成等比數(shù)列,則其前項和取得最大值時,的值為()A.12 B.13C.12或13 D.13或1410.已知直線l與拋物線交于不同的兩點A,B,O為坐標(biāo)原點,若直線的斜率之積為,則直線l恒過定點()A. B.C. D.11.已知橢圓的離心率為,雙曲線的離心率為,則()A. B.C. D.12.在平行六面體中,,,,則()A. B.5C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù),則___________.14.已知數(shù)列為嚴格遞增數(shù)列,且對任意,都有且.若對任意恒成立,則________15.已知橢圓的左、右焦點分別為,,上頂點為A,直線與橢圓C的另一個交點為B,則的面積為___________.16.若分別是平面的法向量,且,,,則的值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)北京、張家港2022年冬奧會申辦委員會在俄羅斯索契舉辦了發(fā)布會,某公司為了競標(biāo)配套活動的相關(guān)代言,決定對旗下的某商品進行一次評估.該商品原來每件售價為25元,年銷售8萬件.(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?(2)為了抓住申奧契機,擴大該商品的影響力,提高年銷售量.公司決定立即對該商品進行全面技術(shù)革新和營銷策略改革,并提高定價到x元.公司擬投入萬作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當(dāng)該商品改革后的銷售量a至少應(yīng)達到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.18.(12分)若雙曲線-=1(a>0,b>0)的焦點坐標(biāo)分別為和,且該雙曲線經(jīng)過點P(3,1)(1)求雙曲線的方程;(2)若F是雙曲線的右焦點,Q是雙曲線上的一點,過點F,Q的直線l與y軸交于點M,且,求直線l的斜率19.(12分)如圖,在四棱錐中,底面為矩形,平面平面,.(1)證明:平面平面;(2)若,為棱的中點,,,求二面角的余弦值20.(12分)某項目的建設(shè)過程中,發(fā)現(xiàn)其補貼額x(單位:百萬元)與該項目的經(jīng)濟回報y(單位:千萬元)之間存在著線性相關(guān)關(guān)系,統(tǒng)計數(shù)據(jù)如下表:補貼額x(單位:百萬元)23456經(jīng)濟回報y(單位:千萬元)2.5344.56(1)請根據(jù)上表所給的數(shù)據(jù),求出y關(guān)于x的線性回歸直線方程;(2)為高質(zhì)量完成該項目,決定對負責(zé)該項目的7名工程師進行考核.考核結(jié)果為4人優(yōu)秀,3人合格.現(xiàn)從這7名工程師中隨機抽取3人,用X表示抽取的3人中考核優(yōu)秀的人數(shù),求隨機變量X的分布列與期望.參考公式:21.(12分)請分別確定滿足下列條件的直線方程(1)過點(1,0)且與直線x﹣2y﹣2=0垂直直線方程是(2)求與直線3x-4y+7=0平行,且在兩坐標(biāo)軸上截距之和為1的直線l的方程.22.(10分)已知拋物線的焦點也是橢圓的一個焦點,如圖,過點任作兩條互相垂直的直線,,分別交拋物線于,,,四點,,分別為,的中點.(1)求的值;(2)求證:直線過定點,并求出該定點的坐標(biāo);(3)設(shè)直線交拋物線于,兩點,試求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】聯(lián)立已知兩條直線方程求出交點,再根據(jù)兩直線平行則斜率相同求出斜率即可.【詳解】由得兩直線交點為(-1,0),直線l斜率與相同,為,則直線l方程為y-0=(x+1),即x-2y+1=0.故選:B.2、D【解析】設(shè)等比數(shù)列的公比為,然后由已知條件列方程組求解即可【詳解】設(shè)等比數(shù)列的公比為,因為,,所以,所以,解得,故選:D3、B【解析】由題可得當(dāng)時,,當(dāng)時,,即得.【詳解】∵{an}是以10為首項,-3為公差的等差數(shù)列,∴,故當(dāng)時,,當(dāng)時,,故時,取得最大值故選:B.4、A【解析】構(gòu)造新函數(shù),以函數(shù)單調(diào)性把不等式轉(zhuǎn)化為整式不等式即可解決.【詳解】不等式可化為:令,則則函數(shù)為單調(diào)增函數(shù).由可得故選:A5、D【解析】根據(jù)長方體中,異面直線和所成角即為直線和所成角,再結(jié)合余弦定理即可求解.【詳解】解:連接、,如下圖所示由圖可知,在長方體中,且,所以,所以異面直線和所成角即為,又,,由余弦定理可得∶故選:D.6、A【解析】根據(jù)條件可知四邊形為正方形,從而根據(jù)邊長相等,列式求雙曲線的離心率.【詳解】不妨設(shè)在第一象限,則,根據(jù)題意,四邊形為正方形,于是,即,化簡得,解得(負值舍去).故選:A.7、C【解析】根據(jù)含全稱量詞命題的否定可寫出結(jié)果.【詳解】全稱命題的否定是特稱命題,所以命題的否定是.故選:C8、B【解析】由題意得到,根據(jù)等比數(shù)列的性質(zhì)得到,化簡,即可求解.【詳解】由,是函數(shù)的兩個不同零點,可得,根據(jù)等比數(shù)列的性質(zhì),可得則.故選:B.9、C【解析】設(shè)等差數(shù)列的公差為q,根據(jù),,成等比數(shù)列,利用等比中項求得公差,再由等差數(shù)列前n項和公式求解.【詳解】設(shè)等差數(shù)列的公差為q,因為,且,,成等比數(shù)列,所以,解得,所以,所以當(dāng)12或13時,取得最大值,故選:C10、A【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到,進而得到的值,將直線的斜率之積為,用A,B點坐標(biāo)表示出來,結(jié)合的值即可求得答案.【詳解】設(shè)直線方程為,聯(lián)立,整理得:,需滿足,即,則,由,得:,所以,即,故,所以直線l為:,當(dāng)時,,即直線l恒過定點,故選:A.11、D【解析】根據(jù)給定的方程求出離心率,的表達式,再計算判斷作答.【詳解】因橢圓的離心率為,則有,因雙曲線的離心率為,則有,所以.故選:D12、B【解析】由,則結(jié)合已知條件及模長公式即可求解.【詳解】解:,所以,所以,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由的導(dǎo)數(shù)為,將代入,即可求出結(jié)果.【詳解】因為,所以,所以.故答案為:.14、66【解析】根據(jù)恒成立和嚴格遞增可得,然后利用遞推求出,的值,不難發(fā)現(xiàn)在此兩項之間的所有項為連續(xù)正整數(shù),于是可得,,然后可解.【詳解】因為,且數(shù)列為嚴格遞增數(shù)列,所以或,若,則(矛盾),故由可得:,,,,,,,,,,,,,因,,,且數(shù)列為嚴格遞增數(shù)列,,所以,,所以,所以故答案為:6615、【解析】求出直線的方程,聯(lián)立方程,求得B點的坐標(biāo),從而可得出答案.【詳解】解:由題意知,,,直線的方程為,聯(lián)立方程組,解得,或,即,所以.故答案為:.16、-1或-2【解析】由題可得,即求.【詳解】依題意,,解得或.故答案為:或.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)40;(2)a至少達到10.2萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和,此時該商品的每件定價為30元.【解析】(1)設(shè)每件定價為x元,可得提高價格后的銷售量,根據(jù)銷售的總收入不低于原收入,建立不等式,解不等式可得每件最高定價;(2)依題意,x>25時,不等式有解,等價于x>25時,有解,利用基本不等式,可以求得a.【詳解】(1)設(shè)每件定價為t元,依題意得,整理得,解得:25≤t≤40.所以要使銷售的總收入不低于原收入,每件定價最多為40元.(2)依題意知:當(dāng)x>25時,不等式有解,等價于x>25時,有解.由于,當(dāng)且僅當(dāng),即x=30時等號成立,所以a≥10.2.當(dāng)該商品改革后的銷售量a至少達到10.2萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和,此時該商品的每件定價為30元.18、(1)(2)【解析】(1)根據(jù)題意列方程組求解(2)待定系數(shù)法設(shè)直線后,由條件求出坐標(biāo)后代入雙曲線方程求解【小問1詳解】,解得,故雙曲線方程為【小問2詳解】,故設(shè)直線方程為則,由得:故,點在雙曲線上,則,解得直線l的斜率為19、(1)見解析;(2)【解析】分析:(1)由四邊形為矩形,可得,再由已知結(jié)合面面垂直的性質(zhì)可得平面,進一步得到,再由,利用線面垂直的判定定理可得面,即可證得平面;(2)取的中點,連接,以為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,由題得,解得.進而求得平面和平面的法向量,利用向量的夾角公式,即可求解二面角的余弦值.詳解:(1)證明:∵四邊形ABCD是矩形,∴CD⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,CD平面ABCD,∴CD⊥平面PBC,∴CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PD平面PCD,∴PB⊥平面PCD.∵PB平面PAB,∴平面PAB⊥平面PCD.(2)設(shè)BC中點為,連接,,又面面,且面面,所以面.以為坐標(biāo)原點,的方向為軸正方向,為單位長,建立如圖所示的空間直角坐標(biāo)系.由(1)知PB⊥平面PCD,故PB⊥,設(shè),可得所以由題得,解得.所以設(shè)是平面的法向量,則,即,可取.設(shè)是平面的法向量,則,即,可取.則,所以二面角的余弦值為.點睛:本題考查了立體幾何中的面面垂直的判定和二面角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過嚴密推理,明確角的構(gòu)成.同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.20、(1)(2)分布列答案見解析,數(shù)學(xué)期望:【解析】(1)根據(jù)表中的數(shù)據(jù)和公式直接求解即可,(2)由題意可知,的可能取值為0,1,2,3,然后求各自對應(yīng)的概率,從而可求得分布列和期望【小問1詳解】.,...【小問2詳解】由題意可知,的可能取值為0,1,2,3.,,分布列為0123.21、(1)2x+y﹣2=0(2)3x-4y-12=0【解析】(1)設(shè)與直線x﹣2y﹣2=0垂直的直線方程為2x+y+m=0,把(1,0)代入2x+y+m=0,解得m即得解(2)方法一:由題意知:可設(shè)l的方程為,求出l在x軸,y軸上的截距,由截距之和為1,解出m,代回求出直線方程;方法二:設(shè)直線方程為,由題意得,解出a,b即可.【小問1詳解】設(shè)與直線x﹣2y﹣2=0垂直的直線方程為2x+y+m=0,把(1,0)代入2x+y+m=0,可得2+m=0,解得m=﹣2所求直線方程為:2x+y﹣2=0【小問2詳解】方法一:由題意知:可設(shè)l的方程為,則l在x軸,y軸上的截距分別為.由知,.所以直線l的方程為:.方法二:顯然直線在兩坐標(biāo)軸上截距不為0,則設(shè)直線方程為,由題意得解得所以直線l的方程為:.即.22、(1)(2)證明見解析,(3,0)(3)【解析】(1)求出橢圓的焦點坐標(biāo),從而可知拋物線的焦點坐標(biāo),進而可得的值;(2)首先設(shè)出直線的方程,聯(lián)立直線與拋物線的方程,得到,坐標(biāo),令,可得直線過點,再證明當(dāng),,,三點共線即可;(3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論