河南省九師聯(lián)盟2024屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第1頁
河南省九師聯(lián)盟2024屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第2頁
河南省九師聯(lián)盟2024屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第3頁
河南省九師聯(lián)盟2024屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第4頁
河南省九師聯(lián)盟2024屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河南省九師聯(lián)盟2024屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若橢圓對稱軸是坐標(biāo)軸,長軸長為,焦距為,則橢圓的方程()A. B.C.或 D.以上都不對2.“”是“直線和直線垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.在直角坐標(biāo)系中,直線的傾斜角是A.30° B.60°C.120° D.150°4.是直線與直線互相平行的()條件A.必要而不充分 B.充分而不必要C.充要 D.既不充分也不必要5.在正三棱錐S?ABC中,M、N分別是棱SC、BC的中點(diǎn),且,若側(cè)棱,則正三棱錐S?ABC外接球的表面積是()A. B.C. D.6.在下列函數(shù)中,求導(dǎo)錯誤的是()A., B.,C., D.,7.已知向量,則下列結(jié)論正確的是()A.B.C.D.8.?dāng)?shù)學(xué)中的數(shù)形結(jié)合也可以組成世間萬物的絢麗畫面,-些優(yōu)美的曲線是數(shù)學(xué)形象美、對稱美、和諧美的產(chǎn)物.曲線C:為四葉玫瑰線.①方程(xy<0)表示的曲線在第二和第四象限;②曲線C上任一點(diǎn)到坐標(biāo)原點(diǎn)0的距離都不超過2;③曲線C構(gòu)成的四葉玫瑰線面積大于4π;④曲線C上有5個整點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn)).則上述結(jié)論中正確的個數(shù)是()A.1 B.2C.3 D.49.已知五個數(shù)據(jù)3,4,x,6,7的平均數(shù)是x,則該樣本標(biāo)準(zhǔn)差為()A.1 B.C. D.210.以橢圓+=1的焦點(diǎn)為頂點(diǎn),以這個橢圓的長軸的端點(diǎn)為焦點(diǎn)的雙曲線方程是()A. B.C. D.11.甲、乙兩名同學(xué)同時從教室出發(fā)去體育館打球(路程相等),甲一半時間步行,一半時間跑步;乙一半路程步行,一半路程跑步.如果兩人步行速度、跑步速度均相等,則()A.甲先到體育館 B.乙先到體育館C.兩人同時到體育館 D.不確定誰先到體育館12.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的可能為()A.9 B.5C.4 D.3二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的漸近線方程為______14.已知球的半徑為4,圓與圓為該球的兩個小圓,為圓與圓的公共弦,,若,則兩圓圓心的距離___________15.已知雙曲線:,斜率為的直線與E的左右兩支分別交于A,B兩點(diǎn),點(diǎn)P的坐標(biāo)為,直線AP交E于另一點(diǎn)C,直線BP交E于另一點(diǎn)D.若直線CD的斜率為,則E的離心率為___________16.若點(diǎn)O和點(diǎn)F分別為橢圓+=1的中心和左焦點(diǎn),點(diǎn)P為橢圓上的任意一點(diǎn),則·的最大值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列為等差數(shù)列,滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和,并求的最大值.18.(12分)已知函數(shù).(1)當(dāng)時,求函數(shù)的極大值與極小值;(2)若函數(shù)在上的最大值是最小值的3倍,求a的值.19.(12分)要設(shè)計(jì)一種圓柱形、容積為500mL的一體化易拉罐金屬包裝,如何設(shè)計(jì)才能使得總成本最低?20.(12分)如圖,在四棱錐中,為平行四邊形,,平面,且,點(diǎn)是的中點(diǎn).(1)求證:平面;(2)在線段上(不含端點(diǎn))是否存在一點(diǎn),使得二面角的余弦值為?若存在,確定的位置;若不存在,請說明理由.21.(12分)如圖,在四棱錐中,平面,底面是直角梯形,,,,,為側(cè)棱包含端點(diǎn)上的動點(diǎn).(1)當(dāng)時,求證平面;(2)當(dāng)直線與平面所成角的正弦值為時,求二面角的余弦值.22.(10分)在等差數(shù)列中,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列是首項(xiàng)為1,公比為2的等比數(shù)列,求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】求得、、的值,由此可得出所求橢圓的方程.【詳解】由題意可得,解得,,由于橢圓的對稱軸是坐標(biāo)軸,則該橢圓的方程為或.故選:C.2、A【解析】因?yàn)橹本€和直線垂直,所以或,再根據(jù)充分必要條件的定義判斷得解.【詳解】因?yàn)椤爸本€和直線垂直,所以或.當(dāng)時,直線和直線垂直;當(dāng)直線和直線垂直時,不一定成立.所以是直線和直線垂直的充分不必要條件,故選:A3、D【解析】根據(jù)直線方程得到直線的斜率后可得直線的傾斜角.【詳解】設(shè)直線的傾斜角為,則,因,故,故選D.【點(diǎn)睛】直線的斜率與傾斜角的關(guān)系是:,當(dāng)時,直線的斜率不存在,注意傾斜角的范圍.4、B【解析】求出直線與平行的等價條件,再利用充分條件、必要條件的定義判斷作答.【詳解】由解得或,當(dāng)時,與平行,當(dāng)時,與平行,則直線與直線平行等價于或,所以是直線與直線互相平行的充分而不必要條件.故選:B5、A【解析】由題意推出平面,即平面,,將此三棱錐補(bǔ)成正方體,則它們有相同的外接球,正方體的對角線就是球的直徑,求出直徑即可求出球的體積【詳解】∵,分別為棱,的中點(diǎn),∴,∵三棱錐為正棱錐,作平面,所以是底面正三角的中心,連接并延長交與點(diǎn),∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因?yàn)镾?ABC是正三棱錐。所以,以,,為從同一定點(diǎn)出發(fā)的正方體三條棱,將此三棱錐補(bǔ)成以正方體,則它們有相同的外接球,正方體的體對角線就是球的直徑,,所以.故選:A.6、B【解析】分別求得每個函數(shù)的導(dǎo)數(shù)即可判斷.詳解】;;;.故求導(dǎo)錯誤的是B.故選:B.7、D【解析】由題可知:,,,故選;D8、B【解析】對于①,由判斷,對于②,利用基本不等式可判斷,對于③,以為圓心,2為半徑的圓的面積與曲線圍成的面積進(jìn)行比較即可,對于④,將和聯(lián)立,求解出兩曲線的切點(diǎn),從而可判斷【詳解】對于①,由,得異號,方程(xy<0)關(guān)于原點(diǎn)及y=x對稱,所以方程(xy<0)表示的曲線在第二和第四象限,所以①正確,對于②,因?yàn)?,所以,所以,所以,所以由曲線的對稱性可知曲線C上任一點(diǎn)到坐標(biāo)原點(diǎn)0的距離都不超過2,所以②正確,對于③,由②可知曲線C上到原點(diǎn)的距離不超過2,而以為圓心,2為半徑的圓的面積為,所以曲線C構(gòu)成的四葉玫瑰線面積小于4π,所以③錯誤,對于④,將和聯(lián)立,解得,所以可得圓與曲線C相切于點(diǎn),,,,而點(diǎn)(1,1)不滿足曲線方程,所以曲線在第一象限不經(jīng)過任何整數(shù)點(diǎn),由曲線的對稱性可知曲線在其它象限也不經(jīng)過任何整數(shù)點(diǎn),所以曲線C上只有1個整點(diǎn)(0,0),所以④錯誤,故選:B9、B【解析】先求出的值,然后利用標(biāo)準(zhǔn)差公式求解即可【詳解】解:因?yàn)槲鍌€數(shù)據(jù)3,4,x,6,7的平均數(shù)是x,所以,解得,所以標(biāo)準(zhǔn)差,故選:B10、B【解析】根據(jù)橢圓的幾何性質(zhì)求橢圓的焦點(diǎn)坐標(biāo)和長軸端點(diǎn)坐標(biāo),由此可得雙曲線的a,b,c,再求雙曲線的標(biāo)準(zhǔn)方程.【詳解】∵橢圓的方程為+=1,∴橢圓的長軸端點(diǎn)坐標(biāo)為,,焦點(diǎn)坐標(biāo)為,,∴雙曲線的焦點(diǎn)在y軸上,且a=1,c=2,∴b2=3,∴雙曲線方程為,故選:B.11、A【解析】設(shè)出總路程與步行速度、跑步速度,表示出兩人所花時間后比較不等式大小【詳解】設(shè)總路程為,步行速度,跑步速度對于甲:,得對于乙:,當(dāng)且僅當(dāng)時等號成立,而,故,乙花時間多,甲先到體育館故選:A12、D【解析】根據(jù)輸出結(jié)果可得輸出時,結(jié)合執(zhí)行邏輯確定輸入k的可能值,即可知答案.【詳解】由,得,則輸人的可能為.∴結(jié)合選項(xiàng)知:D符合要求.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將雙曲線方程化成標(biāo)準(zhǔn)方程,得到且,利用雙曲線漸近線方程,可得結(jié)果【詳解】把雙曲線化成標(biāo)準(zhǔn)方程為,且,雙曲線的漸近線方程為,即故答案為【點(diǎn)睛】本題主要考查利用雙曲線的方程求漸近線方程,意在考查對基礎(chǔ)知識的掌握情況,屬于基礎(chǔ)題.若雙曲線方程為,則漸近線方程為;若雙曲線方程為,則漸近線方程為.14、【解析】欲求兩圓圓心的距離,將它放在與球心組成的三角形中,只要求出球心角即可,通過球的性質(zhì)構(gòu)成的直角三角形即可解得【詳解】∵,球半徑為4,∴小圓的半徑為,∵小圓中弦長,作垂直于,∴,同理可得,在直角三角形中,∵,,∴,∴,∴故答案為:.15、【解析】分別設(shè)線段的中點(diǎn),線段的中點(diǎn),再利用點(diǎn)差法可表示出,由平行關(guān)系易知三點(diǎn)共線,從而利用斜率相等的關(guān)系構(gòu)造方程,代入整理可得到關(guān)系,利用雙曲線得到關(guān)于的齊次方程,進(jìn)而求得離心率.【詳解】設(shè),,線段的中點(diǎn),兩式相減得:…①設(shè),,線段的中點(diǎn)同理可得:…②,易知三點(diǎn)共線,將①②代入得:,所以,即,由題意可得,故.∴,即故答案為:16、6【解析】由橢圓方程得到F,O的坐標(biāo),設(shè)P(x,y)(-2≤x≤2),利用數(shù)量積的坐標(biāo)運(yùn)算將·轉(zhuǎn)化為二次函數(shù)最值求解.【詳解】由橢圓+=1,可得F(-1,0),點(diǎn)O(0,0),設(shè)P(x,y)(-2≤x≤2),則·=x2+x+y2=x2+x+3=x2+x+3=(x+2)2+2,-2≤x≤2,當(dāng)x=2時,·取得最大值6.故答案為:6【點(diǎn)睛】本題主要考查平面向量的數(shù)量積及應(yīng)用以及橢圓的幾何性質(zhì)和二次函數(shù)求最值,還考查了運(yùn)算求解的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2),45【解析】(1)由等差數(shù)列的通項(xiàng)列出方程組,得出通項(xiàng)公式;(2)先得出,再由二次函數(shù)的性質(zhì)得出最大值.【小問1詳解】由,解得,即【小問2詳解】,二次型函數(shù)開口向下,對稱軸為,則當(dāng)或時,有最大值45.18、(1)的極大值為0,的極小值為(2)2【解析】(1)先求導(dǎo)可得,再利用導(dǎo)函數(shù)判斷的單調(diào)性,進(jìn)而求解;(2)由(1)可得在上的最小值為,由,,可得的最大值為,進(jìn)而根據(jù)求解即可.【詳解】解:(1)當(dāng)時,,所以,令,則或,則當(dāng)和時,;當(dāng)時,,則在和上單調(diào)遞增,在上單調(diào)遞減,所以極大值為;的極小值為.(2)由題,,由(1)可得在上單調(diào)遞減,在上單調(diào)遞增,所以的最小值即為的極小值;因?yàn)?,所以,因?yàn)?,則,所以.【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)求函數(shù)的極值,考查利用導(dǎo)函數(shù)求函數(shù)的最值,考查運(yùn)算能力.19、當(dāng)圓柱底面半徑為,高為時,總成本最底.【解析】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,進(jìn)而根據(jù)體積得到,然后求出表面積,進(jìn)而運(yùn)用導(dǎo)數(shù)的方法求得表面積的最小值,此時成本最小.【詳解】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,每平方厘米金屬包裝造價為元,由題意得:,則,表面積造價,,令,得,令,得,的單調(diào)遞減區(qū)間為,遞增區(qū)間為,當(dāng)圓柱底面半徑為,高為時,總成本最底.20、(1)見解析(2)存在,【解析】(1)連接交于點(diǎn),由三角形中位線性質(zhì)知,由線面平行判定定理證得結(jié)論;(2)以為原點(diǎn)建立空間直角坐標(biāo)系,假設(shè),可用表示出點(diǎn)坐標(biāo);根據(jù)二面角的向量求法可根據(jù)二面角的余弦值構(gòu)造出關(guān)于的方程,從而解得結(jié)果.【詳解】(1)連接交于點(diǎn),連接,四邊形為平行四邊形,為中點(diǎn),又為中點(diǎn),,平面,平面,平面;(2)平面,,兩兩互相垂直,則以為坐標(biāo)原點(diǎn),可建立如下圖所示的空間直角坐標(biāo)系:則,,,,,,設(shè),且,則,,即,設(shè)平面的法向量,又,,則,令,則,,;設(shè)平面的一個法向量,又,,則,令,則,,;,解得:或,二面角的余弦值為,二面角為銳二面角,不滿足題意,舍去,即.在線段上存在點(diǎn),時,二面角的余弦值為.【點(diǎn)睛】本題考查立體幾何中的線面平行關(guān)系的證明、存在性問題的求解;求解存在性問題的關(guān)鍵是能夠利用共線向量的方式將所求點(diǎn)坐標(biāo)表示出來,進(jìn)而利用二面角的向量求法構(gòu)造方程;易錯點(diǎn)是忽略二面角的范圍,造成參數(shù)值求解錯誤.21、(1)證明見解析;(2).【解析】(1)連接交于,連接,證得,從而證得平面;(2)過作于,以為原點(diǎn),建立空間直角坐標(biāo)系,設(shè),求面的法向量,由直線與平面所成角的正弦值為,求得的值,再用向量法求出二面角的余弦值.【詳解】解:(1)連接交于,連接,由題意,∵,∴,∴,又面,面,∴面.(2)過作于,則在中,,,,以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.設(shè),則,,,,,,,,設(shè)向量

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論