版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
貴州省黔西南布依族苗族自治州興義市第八中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若傾斜角為的直線過,兩點(diǎn),則實(shí)數(shù)()A. B.C. D.2.設(shè)等差數(shù)列,前n項(xiàng)和分別是,若,則()A.1 B.C. D.3.與向量平行,且經(jīng)過點(diǎn)的直線方程為()A. B.C. D.4.已知?jiǎng)t是的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.設(shè),向量,,,且,,則()A. B.C.3 D.46.橢圓焦距為()A. B.8C.4 D.7.已知等差數(shù)列的公差為,則“”是“數(shù)列為單調(diào)遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.圓與的公共弦長為()A. B.C. D.9.若向量,,,則()A. B.C. D.10.函數(shù)的導(dǎo)數(shù)為()A.B.CD.11.設(shè)函數(shù)在R上可導(dǎo),其導(dǎo)函數(shù)為,且函數(shù)的圖像如題(8)圖所示,則下列結(jié)論中一定成立的是A.函數(shù)有極大值和極小值B.函數(shù)有極大值和極小值C.函數(shù)有極大值和極小值D.函數(shù)有極大值和極小值12.已知雙曲線的一條漸近線方程為,則該雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.寫出一個(gè)同時(shí)滿足下列條件①②的圓C的一般方程______①圓心在第一象限;②圓C與圓相交的弦的方程為14.如圖:雙曲線的左右焦點(diǎn)分別為,,過原點(diǎn)O的直線與雙曲線C相交于P,Q兩點(diǎn),其中P在右支上,且,則的面積為___________.15.已知為拋物線上的動(dòng)點(diǎn),,,則的最小值為________.16.已知某農(nóng)場某植物高度,且,如果這個(gè)農(nóng)場有這種植物10000棵,試估計(jì)該農(nóng)場這種植物高度在區(qū)間上的棵數(shù)為______.參考數(shù)據(jù):若,則,,.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}滿足:點(diǎn)(n,bn)在曲線y=上,a1=b4,___,數(shù)列{}的前n項(xiàng)和為Tn從①S4=20,②S3=2a3,③3a3﹣a5=b2這三個(gè)條件中任選一個(gè),補(bǔ)充到上面問題的橫線上并作答(1)求數(shù)列{an},{bn}的通項(xiàng)公式;(2)是否存在正整數(shù)k,使得Tk>,且bk>?若存在,求出滿足題意的k值;若不存在,請(qǐng)說明理由18.(12分)在①,②,③,三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問題中,并解答.設(shè)數(shù)列是公比大于0的等比數(shù)列,其前項(xiàng)和為,數(shù)列是等差數(shù)列,其前項(xiàng)和為.已知,,,_____________.(1)請(qǐng)寫出你選擇條件的序號(hào)____________;并求數(shù)列和的通項(xiàng)公式;(2)求和.19.(12分)已知正項(xiàng)數(shù)列的首項(xiàng)為,且滿足,(1)求證:數(shù)列為等比數(shù)列;(2)記,求數(shù)列的前n項(xiàng)和20.(12分)已知函數(shù)f(x)+alnx,實(shí)數(shù)a>0(1)當(dāng)a=2時(shí),求函數(shù)f(x)在x=1處的切線方程;(2)討論函數(shù)f(x)在區(qū)間(0,10)上的單調(diào)性和極值情況;(3)若存在x∈(0,+∞),使得關(guān)于x的不等式f(x)<2+a2x成立,求實(shí)數(shù)a的取值范圍21.(12分)物聯(lián)網(wǎng)(Internetofthings)是一個(gè)基于互聯(lián)網(wǎng)、傳統(tǒng)電信網(wǎng)等信息承載體,讓所有能夠被獨(dú)立尋址的普通物理對(duì)象實(shí)現(xiàn)互聯(lián)互通的網(wǎng)絡(luò),具有十分廣闊的市場前景.現(xiàn)有一家物流公司計(jì)劃租地建造倉庫存儲(chǔ)貨物,經(jīng)過市場調(diào)查了解到下列信息:倉庫每月土地占地費(fèi)(單位:萬元)與倉庫到車站的距離x(單位:千米)之間的關(guān)系為,每月庫存貨物費(fèi)(單位:萬元)與x之間的關(guān)系為:;若在距離車站11.5千米建倉庫,則和分別為4萬元和23萬元.(1)求的值;(2)這家公司應(yīng)該把倉庫建在距離車站多少千米處,才能使兩項(xiàng)費(fèi)用之和最小?最小費(fèi)用是多少?22.(10分)如圖,在四棱錐中,平面平面,,,是邊長為的等邊三角形,是以為斜邊的等腰直角三角形,點(diǎn)為線段的中點(diǎn).(1)證明:平面;(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)直線的傾斜角和斜率的關(guān)系得到直線的斜率為,再根據(jù)兩點(diǎn)的斜率公式計(jì)算可得;【詳解】解:因?yàn)橹本€的傾斜角為,所以直線的斜率為,所以,解得;故選:C2、B【解析】根據(jù)等差數(shù)列的性質(zhì)和求和公式變形求解即可【詳解】因?yàn)榈炔顢?shù)列,的前n項(xiàng)和分別是,所以,故選:B3、A【解析】利用點(diǎn)斜式求得直線方程.【詳解】依題意可知,所求直線的斜率為,所以所求直線方程為,即.故選:A4、A【解析】先解不等式,再比較集合包含關(guān)系確定選項(xiàng).【詳解】因?yàn)椋允堑某浞植槐匾獥l件,選A.【點(diǎn)睛】本題考查解含絕對(duì)值不等式、解一元二次不等式以及充要關(guān)系判定,考查基本分析求解能力,屬基礎(chǔ)題.5、C【解析】根據(jù)空間向量垂直與平行的坐標(biāo)表示,求得的值,得到向量,進(jìn)而求得,得到答案.【詳解】由題意,向量,,,因?yàn)?,可得,解得,即,又因?yàn)?,可得,解得,即,可得,所?故選:C.6、A【解析】由題意橢圓的焦點(diǎn)在軸上,故,求解即可【詳解】由題意,,故橢圓的焦點(diǎn)在軸上故焦距故選:A7、C【解析】利用等差數(shù)列的定義和數(shù)列單調(diào)性的定義判斷可得出結(jié)論.【詳解】若,則,即,此時(shí),數(shù)列為單調(diào)遞增數(shù)列,即“”“數(shù)列為單調(diào)遞增數(shù)列”;若等差數(shù)列為單調(diào)遞增數(shù)列,則,即“”“數(shù)列為單調(diào)遞增數(shù)列”.因此,“”是“數(shù)列為單調(diào)遞增數(shù)列”的充分必要條件.故選:C.8、D【解析】已知兩圓方程,可先讓兩圓方程作差,得到其公共弦的方程,然后再計(jì)算圓心到直線的距離,再結(jié)合勾股定理即可完成弦長的求解.【詳解】已知圓,圓,兩圓方程作差,得到其公共弦的方程為::,而圓心到直線的距離為,圓的半徑為,所以,所以.故選:D.9、A【解析】根據(jù)向量垂直得到方程,求出的值.【詳解】由題意得:,解得:.故選:A10、B【解析】由導(dǎo)數(shù)運(yùn)算法則可求出.【詳解】,.故選:B.11、D【解析】則函數(shù)增;則函數(shù)減;則函數(shù)減;則函數(shù)增;選D.【考點(diǎn)定位】判斷函數(shù)的單調(diào)性一般利用導(dǎo)函數(shù)的符號(hào),當(dāng)導(dǎo)函數(shù)大于0則函數(shù)遞增,當(dāng)導(dǎo)函數(shù)小于0則函數(shù)遞減12、B【解析】由雙曲線的漸近線方程以及即可求得離心率.【詳解】由已知條件得,∴,∴,∴,∴,故選:.二、填空題:本題共4小題,每小題5分,共20分。13、(答案不唯一)【解析】設(shè)所求圓為,由圓心在第一象限可判斷出,只需取特殊值,即可得到答案.【詳解】可設(shè)所求圓為,即只需,解得:,不妨取,則圓的方程為:.故答案為:(答案不唯一)14、24【解析】利用雙曲線定義結(jié)合已知求出,,再利用雙曲線的對(duì)稱性計(jì)算作答.【詳解】依題意,,,又,解得,,則有,即,連接,如圖,因過原點(diǎn)O的直線與雙曲線C相交于P,Q兩點(diǎn),由雙曲線的對(duì)稱性知,P,Q關(guān)于原點(diǎn)O對(duì)稱,因此,四邊形是平行四邊形,,所以的面積為24.故答案為:2415、6【解析】根據(jù)拋物線的定義把的長轉(zhuǎn)化為到準(zhǔn)線的距離為,進(jìn)而數(shù)形結(jié)合求出最小值.【詳解】易知為拋物線的焦點(diǎn),設(shè)到準(zhǔn)線的距離為,則,而的最小值為到準(zhǔn)線的距離,故的最小值為.故答案為:616、1359【解析】由已知求得,則,結(jié)合已知求得,乘以10000得答案【詳解】解:由,得,又,,則,估計(jì)該農(nóng)場這種植物高度在區(qū)間,上的棵數(shù)為故答案為:1359三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)條件選擇見解析;an=2n,bn=25﹣n.(2)不存在,理由見解析.【解析】(1)把點(diǎn)(n,bn)代入曲線y=可得到bn=25﹣n,進(jìn)而求出a1,設(shè)等差數(shù)列{an}的公差為d,選①S4=20,利用等差數(shù)列的前n項(xiàng)和公式可求出d,從而得到an;若選②S3=2a3,利用等差數(shù)列的前n項(xiàng)和公式可求出d,從而得到an;若選③3a3﹣a5=b2,利用等差數(shù)列的通項(xiàng)公式公式可求出d,從而得到an;(2)由(1)可知Sn==n(1+n),=,再利用裂項(xiàng)相消法求出Tn=1﹣,不等式無解,即不存在正整數(shù)k,使得Tk>,且bk>【小問1詳解】解:∵點(diǎn)(n,bn)在曲線y=上,∴=25﹣n,∴a1=b4=25﹣4=2,設(shè)等差數(shù)列{an}的公差為d,若選①S4=20,則S4==20,解得d=2,∴an=2+2(n﹣1)=2n;若選②S3=2a3,則S3=a1+a2+a3=2a3,∴a1+a2=a3,∴2+2+d=2+2d,解得d=2,∴an=2+2(n﹣1)=2n;若選③3a3﹣a5=b2,則3(a1+2d)﹣(a1+4d)=25﹣2=8,∴2a1+2d=8,即2×2+2d=8,∴d=2,∴an=2+2(n﹣1)=2n;【小問2詳解】解:由(1)可知Sn===n(1+n),∴==,∴Tn=(1﹣)+()+……+()=1﹣,假設(shè)存在正整數(shù)k,使得Tk>,且bk>,∴,即,此不等式無解,∴不存在正整數(shù)k,使得Tk>,且bk>18、(1)選①,,;選②,,;選③,,;(2),【解析】(1)選條件①根據(jù)等比數(shù)列列出方程求出公比得通項(xiàng)公式,再由等差數(shù)列列出方程求出首項(xiàng)與公差可得通項(xiàng)公式,選②③與①相同的方法求數(shù)列的通項(xiàng)公式;(2)根據(jù)等比數(shù)列、等差數(shù)列的求和公式解計(jì)算即可.【小問1詳解】選條件①:設(shè)等比數(shù)列的公比為q,,,解得或,,,.設(shè)等差數(shù)列的公差為d,,,解得,,.選條件②:設(shè)等比數(shù)列的公比為q,,,解得或,,,.設(shè)等差數(shù)列的公差為,,,解得,,選條件③:設(shè)等比數(shù)列的公比為,,,解得或,,,.設(shè)等差數(shù)列的公差為,,,解得,【小問2詳解】由(1)知,,19、(1)證明見解析(2)【解析】(1)由遞推關(guān)系式化簡及等比數(shù)列的的定義證明即可;(2)根據(jù)裂項(xiàng)相消法求解即可得解.【小問1詳解】證明:由得,而且,則,即數(shù)列為首項(xiàng),公比為的等比數(shù)列【小問2詳解】由上可知,所以,20、(1)4x﹣y+2=0(2)答案見解析(3)(0,2)∪(2,+∞)【解析】(1)求出f(x)的導(dǎo)數(shù),可得切線的斜率和切點(diǎn)坐標(biāo),由直線的點(diǎn)斜式方程可得所求切線的方程;(2)求得f(x)的導(dǎo)數(shù),分a、0<a兩種情況討論求出答案即可;(3)由題意可得存在x∈(0,+∞),使得不等式成立,令,x>0,求得其最小值,再把最小值看成關(guān)于的函數(shù),結(jié)合其單調(diào)性和極值可得答案【小問1詳解】函數(shù)f(x)的定義域?yàn)椋?,+∞),當(dāng)a=2時(shí),,導(dǎo)數(shù)為4,可得f(x)在x=1處的切線的斜率為4,又f(1)=6,所以f(x)在x=1處的切線的方程為y﹣6=4(x﹣1),即4x﹣y+2=0;【小問2詳解】f(x)的導(dǎo)數(shù)為f′(x)a2,x>0,令f′(x)=0,可得x(舍去),①當(dāng)010,即a時(shí),當(dāng)0<x時(shí),f′(x)<0,f(x)遞減;當(dāng)x<10時(shí),f′(x)>0,f(x)遞增所以f(x)在(0,)上遞減,在(,10)上遞增,f(x)在x處取得極小值,無極大值;②當(dāng)10即0<a時(shí),f′(x)<0,f(x)在(0,10)上遞減,無極值綜上可得,當(dāng)a時(shí),f(x)在(0,)單調(diào)遞減,在(,10)上單調(diào)遞增,f(x)在x時(shí)取得極小值,無極大值當(dāng)0<a時(shí),f(x)在區(qū)間(0,10)上遞減,無極值;【小問3詳解】存在x∈(0,+∞),使得不等式f(x)<2+a2x成立等價(jià)為存在x∈(0,+∞),使得不等式alnx﹣2<0成立令,x>0,g′(x),因?yàn)閍>0,可得當(dāng)0<x時(shí),g′(x)<0,g(x)遞減;當(dāng)x時(shí),g′(x)>0,g(x)遞增,所以當(dāng)x時(shí),g(x)取得極小值,且為最小值,由題意可得,令,,令h′(x)=0,可得x=2,當(dāng)x∈(0,2)時(shí),h′(x)>0,h(x)遞增;當(dāng)x∈(2,+∞)時(shí),h′(x)<0,h(x)遞減所以當(dāng)x=2時(shí),h(x)取得極大值,且為最大值h(2)=0所以滿足的實(shí)數(shù)a的取值范圍是(0,2)∪(2,+∞)21、(1)(2)這家公司應(yīng)該把倉庫建在距離車站多少千米處,才能使兩項(xiàng)費(fèi)用之和最小,最小費(fèi)用是萬元【解析】(1)將題中數(shù)據(jù)代入解析式可求;(2)利用基本不等式可求解.【小問1詳解】由題意,,當(dāng)時(shí),,,解得.【小問2詳解】設(shè)兩項(xiàng)費(fèi)用之和為(單位:萬元),則.因?yàn)?,所以,所以,?dāng)且僅當(dāng)時(shí)等號(hào)成立,解得.所以這家公司應(yīng)該把倉庫建在距離車站多少千米處,才能使兩項(xiàng)費(fèi)用之和最小,最小費(fèi)用是萬元.22、(1)證明見解析;(2).【解析】(1)取的中點(diǎn),連接,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版?zhèn)€人住房裝修合同范本
- 2025版加氣站自動(dòng)化系統(tǒng)維護(hù)與升級(jí)合同3篇
- 2024年股權(quán)資產(chǎn)轉(zhuǎn)讓操作具體合同書版B版
- 二零二五年便利店加盟店廣告宣傳與品牌推廣合同3篇
- 2024年版高層住宅建筑勞務(wù)施工協(xié)議一
- 二零二五年賓館客房用品品質(zhì)檢測(cè)采購合同范本3篇
- 2025年度汽車零部件買賣合同模板3篇
- 2024年紀(jì)錄片合作拍攝協(xié)議
- 2024年適用企業(yè)信用貸款合同范本版B版
- 2024年電力設(shè)施保護(hù)與配電工程合同
- 分層作業(yè)的教學(xué)設(shè)計(jì)
- 蘇教版四年級(jí)上冊(cè)科學(xué)期末試題(含答案)
- 精神科出走防范預(yù)案及應(yīng)急處理流程
- 高中英語外研版新教材unit3說課like-father-like-son
- 印度尼西亞民法
- 金屬釕及其化合物
- 【西平李氏】忠武郡王李晟后裔分布及部分家譜
- 水庫回水計(jì)算(實(shí)用)
- 伊索寓言-狗和影子課件
- 《上帝擲骰子嗎:量子物理史話》導(dǎo)讀學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫2023年
- 卸船機(jī)用行星減速機(jī)的設(shè)計(jì)-畢業(yè)設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論