版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河北唐山市2023-2024學(xué)年數(shù)學(xué)高二上期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線上有兩個點,焦點,已知,則線段的中點到軸的距離是()A.1 B.C.2 D.2.已知點,是橢圓:的左、右焦點,是的左頂點,點在過且斜率為的直線上,為等腰三角形,且,則的離心率為()A. B.C. D.3.方程化簡的結(jié)果是()A. B.C. D.4.已知隨機(jī)變量服從正態(tài)分布,若,則()A.0.2 B.0.24C.0.28 D.0.325.若函數(shù)恰好有個不同的零點,則的取值范圍是()A. B.C. D.6.若直線與曲線只有一個公共點,則m的取值范圍是()A. B.C.或 D.或7.已知橢圓的右焦點為,為坐標(biāo)原點,為軸上一點,點是直線與橢圓的一個交點,且,則橢圓的離心率為()A. B.C. D.8.已知點,,若直線過點且與線段相交,則直線的斜率的取值范圍是()A. B.C. D.9.設(shè)實系數(shù)一元二次方程在復(fù)數(shù)集C內(nèi)的根為、,則由,可得.類比上述方法:設(shè)實系數(shù)一元三次方程在復(fù)數(shù)集C內(nèi)的根為,則的值為A.﹣2 B.0C.2 D.410.雙曲線的漸近線的斜率是()A.1 B.C. D.11.若直線與曲線有公共點,則b的取值范圍是()A. B.C. D.12.已知空間向量,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在梯形中,,,.將梯形繞所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為______.14.已知直線與,若,則實數(shù)a的值為______15.已知直線與曲線,在曲線上隨機(jī)取一點,則點到直線的距離不大于的概率為__________.16.__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)等差數(shù)列的前項和為,為各項均為正數(shù)的等比數(shù)列,且,,再從條件①:;②:;③:這三個條件中選擇一個作為已知,解答下列問題:(1)求和的通項公式;(2)設(shè),數(shù)列的前項和為,求證:18.(12分)如圖,直四棱柱中,底面是邊長為的正方形,點在棱上.(1)求證:;(2)從條件①、條件②、條件③這三個條件中選擇兩個作已知,使得平面,并給出證明.條件①:為的中點;條件②:平面;條件③:.(3)在(2)的條件下,求平面與平面夾角的余弦值.19.(12分)如圖所示的四棱錐的底面是一個等腰梯形,,且,是△的中線,點E是棱的中點(1)證明:∥平面(2)若平面平面,且,求平面與平面夾角余弦值(3)在(2)條件下,求點D到平面的距離20.(12分)已知橢圓,點在上,,且(1)求出直線所過定點的坐標(biāo);(不需要證明)(2)過A點作的垂線,垂足為,是否存在點,使得為定值?若存在,求出的值;若不存在,說明理由.21.(12分)已知橢圓(a>b>0)的右焦點為F2(3,0),離心率為e.(1)若e=,求橢圓的方程;(2)設(shè)直線y=kx與橢圓相交于A,B兩點,M,N分別為線段AF2,BF2的中點,若坐標(biāo)原點O在以MN為直徑的圓上,且<e≤,求k的取值范圍.22.(10分)已知拋物線E:過點Q(1,2),F(xiàn)為其焦點,過F且不垂直于x軸的直線l交拋物線E于A,B兩點,動點P滿足△PAB的垂心為原點O.(1)求拋物線E的方程;(2)求證:動點P在定直線m上,并求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用拋物線的定義,將拋物線上的點到焦點的距離轉(zhuǎn)化為點到準(zhǔn)線的距離,即可求出線段中點的橫坐標(biāo),即得到答案.【詳解】由已知可得拋物線的準(zhǔn)線方程為,設(shè)點的坐標(biāo)分別為和,由拋物線的定義得,即,線段中點的橫坐標(biāo)為,故線段的中點到軸的距離是.故選:.2、D【解析】設(shè),先求出點,得,化簡即得解【詳解】由題意可知橢圓的焦點在軸上,如圖所示,設(shè),則,∵為等腰三角形,且,∴.過作垂直軸于點,則,∴,,即點.∵點在過點且斜率為的直線上,∴,解得,∴.故選:D【點睛】方法點睛:求橢圓的離心率常用的方法有:(1)公式法(求出橢圓的代入離心率的公式即得解);(2)方程法(通過已知找到關(guān)于離心率的方程解方程即得解).3、D【解析】由方程的幾何意義得到是橢圓,進(jìn)而得到焦點和長軸長求解.【詳解】∵方程,表示平面內(nèi)到定點、的距離的和是常數(shù)的點的軌跡,∴它的軌跡是以為焦點,長軸,焦距的橢圓;∴;∴橢圓的方程是,即為化簡的結(jié)果故選:D4、C【解析】依據(jù)正態(tài)曲線的對稱性即可求得【詳解】由隨機(jī)變量服從正態(tài)分布,可知正態(tài)曲線的對稱軸為直線由,可得則,故故選:C5、D【解析】分析可知,直線與函數(shù)的圖象有個交點,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與極值,數(shù)形結(jié)合可求得實數(shù)的取值范圍.【詳解】令,可得,構(gòu)造函數(shù),其中,由題意可知,直線與函數(shù)的圖象有個交點,,由,可得或,列表如下:增極大值減極小值增所以,,,作出直線與函數(shù)的圖象如下圖所示:由圖可知,當(dāng)時,即當(dāng)時,直線與函數(shù)的圖象有個交點,即函數(shù)有個零點.故選:D.6、D【解析】根據(jù)曲線方程的特征,發(fā)現(xiàn)曲線表示在軸上方的圖象,畫出圖形,根據(jù)圖形上直線的三個特殊位置,當(dāng)已知直線位于直線位置時,把已知直線的解析式代入橢圓方程中,消去得到關(guān)于的一元二次方程,由題意可知根的判別式等于0即可求出此時對應(yīng)的的值;當(dāng)已知直線位于直線及直線的位置時,分別求出對應(yīng)的的值,寫出滿足題意得的范圍,綜上,得到所有滿足題意得的取值范圍【詳解】根據(jù)曲線,得到,解得:;,畫出曲線的圖象,為橢圓在軸上邊的一部分,如圖所示:當(dāng)直線在直線的位置時,直線與橢圓相切,故只有一個交點,把直線代入橢圓方程得:,得到,即,化簡得:,解得或(舍去),則時,直線與曲線只有一個公共點;當(dāng)直線在直線位置時,直線與曲線剛好有兩個交點,此時,當(dāng)直線在直線位置時,直線與曲線只有一個公共點,此時,則當(dāng)時,直線與曲線只有一個公共點,綜上,滿足題意得的范圍是或故選:D7、D【解析】設(shè)橢圓的左焦點為,由橢圓的對稱性可知,則,所以,即可得到的關(guān)系,利用橢圓的定義進(jìn)而求得離心率.【詳解】設(shè)橢圓的左焦點為,連接,因為,所以,如圖所示,所以,設(shè),,則,所以,故選:D.8、B【解析】直接利用兩點間的坐標(biāo)公式和直線的斜率的關(guān)系求出結(jié)果【詳解】解:直線過點且斜率為,與連接兩點,的線段有公共點,由圖,可知,,當(dāng)時,直線與線段有交點故選:B9、A【解析】用類比推理得到,再用待定系數(shù)法得到,,再根據(jù)求解.【詳解】,由對應(yīng)系數(shù)相等得:,.故選:A.【點睛】本題主要考查合情推理以及待定系數(shù)法,還考查了轉(zhuǎn)化化歸的思想和邏輯推理的能力,屬于中檔題.10、B【解析】由雙曲線的漸近線方程為:,化簡即可得到答案.【詳解】雙曲線的漸近線方程為:,即,漸近線的斜率是.故選:B11、D【解析】將本題轉(zhuǎn)化為直線與半圓的交點問題,數(shù)形結(jié)合,求出的取值范圍【詳解】將曲線的方程化簡為即表示以為圓心,以2為半徑的一個半圓,如圖所示:當(dāng)直線經(jīng)過時最大,即,當(dāng)直線與下半圓相切時最小,由圓心到直線距離等于半徑2,可得:解得(舍去),或結(jié)合圖象可得故選:D.12、C【解析】A利用向量模長的坐標(biāo)表示判斷;B根據(jù)向量平行的判定,是否存在實數(shù)使即可判斷;C向量數(shù)量積的坐標(biāo)表示求即可判斷;D利用向量坐標(biāo)的線性運算及數(shù)量積的坐標(biāo)表示求即可.【詳解】因為,所以A不正確:因為不存在實數(shù)使,所以B不正確;因為,故,所以C正確;因為,所以,所以D不正確故選:C二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】畫出幾何體的直觀圖,利用已知條件,求解幾何體的體積即可【詳解】梯形ABCD:由題意可知空間幾何體的直觀圖如圖:旋轉(zhuǎn)體是底面半徑為1,高為2的圓柱,挖去一個相同底面高為1的圓錐,幾何體的體積為:故答案為:14、【解析】由可得,從而可求出實數(shù)a的值【詳解】因為直線與,且,所以,解得,故答案:15、【解析】畫出示意圖,根據(jù)圖形分析可知點在陰影部分所對的劣弧上,由幾何概型可求出.【詳解】作出示意圖曲線是圓心為原點,半徑為2的一個半圓.圓心到直線距離,而點到直線的距離為,故若點到直線的距離不大于,則點在陰影部分所對的劣弧上,由幾何概型的概率計算公式知,所求概率為.故答案為:.【點睛】本題考查幾何概型的概率計算,屬于中檔題.16、【解析】先由題得到,再整體代入化簡即得解.【詳解】因為,所以,則故答案為【點睛】本題主要考查差角的正切公式,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)an=n,bn=(2)證明見解析【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,q>0,由等差數(shù)列和等比數(shù)列的通項公式及前n項和公式,列出方程組求解即可得答案;(2)求出,利用裂項相消求和法求出前項和為,即可證明【小問1詳解】解:設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,q>0,選①:,又,,可得1+5d=3q,1+4d=5d,解得d=1,q=2,則an=1+n﹣1=n,bn=;選②:,又a1=b1=1,a6=3b2,可得1+5d=3q,q4=4(q3﹣q2),解得d=1,q=2,則an=1+n﹣1=n,bn=;選③:,又a1=b1=1,a6=3b2,可得1+5d=3q,8+28d=6(3+3d),解得d=1,q=2,則an=1+n﹣1=n,bn=;小問2詳解】證明:由(1)知,,,所以18、(1)證明見解析;(2)答案見解析;(3).【解析】(1)連結(jié),,由直四棱柱的性質(zhì)及線面垂直的性質(zhì)可得,再由正方形的性質(zhì)及線面垂直的判定、性質(zhì)即可證結(jié)論.(2)選條件①③,設(shè),連結(jié),,由中位線的性質(zhì)、線面垂直的性質(zhì)可得、,再由線面垂直的判定證明結(jié)論;選條件②③,設(shè),連結(jié),由線面平行的性質(zhì)及平行推論可得,由線面垂直的性質(zhì)有,再由線面垂直的判定證明結(jié)論;(3)構(gòu)建空間直角坐標(biāo)系,求平面、平面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求平面與平面夾角的余弦值.【小問1詳解】連結(jié),,由直四棱柱知:平面,又平面,所以,又為正方形,即,又,∴平面,又平面,∴.【小問2詳解】選條件①③,可使平面.證明如下:設(shè),連結(jié),,又,分別是,的中點,∴.又,所以.由(1)知:平面,平面,則.又,即平面.選條件②③,可使平面.證明如下:設(shè),連結(jié).因為平面,平面,平面平面,所以,又,則.由(1)知:平面,平面,則.又,即平面.【小問3詳解】由(2)可知,四邊形為正方形,所以.因為,,兩兩垂直,如圖,以為原點,建立空間直角坐標(biāo)系,則,,,,,,所以,.由(1)知:平面的一個法向量為.設(shè)平面的法向量為,則,令,則.設(shè)平面與平面的夾角為,則,所以平面與平面夾角的余弦值為.19、(1)證明見解析;(2);(3).【解析】(1)連接、,平行四邊形的性質(zhì)、線面平行的判定可得平面、平面,再根據(jù)面面平行的判定可得平面平面,利用面面平行的性質(zhì)可證結(jié)論;(2)取的中點為,連接,證明出平面,,以為坐標(biāo)原點,、、的方向分別為軸、軸、軸的正方向建立空間直角坐標(biāo)系,利用空間向量法可求得平面與平面所成銳二面角的余弦值.(3)利用等體積法,求D到平面的距離【小問1詳解】連接、,由、分別是棱、的中點,則,平面,平面,則平面又,且,∴且,四邊形是平行四邊形,則,平面,平面,則平面又,可得平面平面.又平面∴平面【小問2詳解】由知:,又平面平面,平面平面,平面,∴平面取的中點為,連接、,由且,故四邊形為平行四邊形,故,則△為等邊三角形,故,以為坐標(biāo)原點,、、的方向分別為軸、軸、軸的正方向建立如圖所示的空間直角坐標(biāo)系易知,,所以、、、、,,,,設(shè)平面的法向量為,則,令,得設(shè)平面的法向量為,則,令,得設(shè)平面與平面所成的銳二面角為.則,即平面與平面所成銳二面角的余弦值為【小問3詳解】由(2)知:平面,則是三棱錐的高且,四邊形為平行四邊形,又,即為菱形,∴,而,則,且,∴,故.又,由上易知:△為等腰三角形且,∴,則D到平面的距離.20、(1)(2)存在,【解析】(1)分斜率存在和斜率不存在兩種情況,當(dāng)斜率存在時,設(shè)出直線方程,聯(lián)立橢圓方程,利用韋達(dá)定理列出方程,求出定點坐標(biāo),當(dāng)斜率不存在時,設(shè)出點的坐標(biāo)進(jìn)行求解;(2)結(jié)合第一問的定點坐標(biāo),結(jié)合直角三角形斜邊中線得到存在點,使得為定值,求出結(jié)果.【小問1詳解】設(shè)點,若直線斜率存在時,設(shè)直線的方程為:,代入橢圓方程消去并整理得:,可得,因為,所以,即,根據(jù),代入整理可得:,所以,整理化簡得:,因為不在直線上,所以,故,于是的方程為,所以直線過定點直線過定點.當(dāng)直線的斜率不存在時,可得,由得:,得,結(jié)合可得:,解得:或(舍).此時直線過點【小問2詳解】由(1)可知因為,取中點,則此時,【點睛】直線過定點問題,一般處理思路是分斜率存在和斜率不存在兩種情況,特別是斜率存在時,設(shè)出直線為,聯(lián)立后用韋達(dá)定理得到兩根之和與兩根之積,結(jié)合題干條件得到等量關(guān)系,求出的關(guān)系,進(jìn)而得到定點坐標(biāo).21、(1);(2)【解析】(1)根據(jù)右焦點為F2(3,0),以及,求得a,b,c即可.(2)聯(lián)立,根據(jù)M,N分別為線段AF2,BF2中點,且坐標(biāo)原點O在以MN為直徑的圓上,易得OM⊥ON,則四邊形OMF2N為矩形,從而AF2⊥BF2,然后由0,結(jié)合韋達(dá)定理求解.【詳解】(1)由題意得c=3,,所以.又因為a2=b2+c2,所以b2=3.所以橢圓的方程為.(2)由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度餐飲泔水回收與環(huán)保設(shè)施投資合同3篇
- 二零二五年礦山土地及資源使用權(quán)轉(zhuǎn)讓合同3篇
- 二零二五版白糖進(jìn)口許可證申請代理服務(wù)合同下載2篇
- 二零二五年度駕駛員押運員安全責(zé)任及培訓(xùn)合同3篇
- 二零二五版企事業(yè)單位節(jié)能環(huán)保辦公電腦采購合同2篇
- 二零二五版電子商務(wù)平臺借款及庫存商品質(zhì)押合同3篇
- 二零二五年紡織原料市場調(diào)研與分析合同2篇
- 小區(qū)下水管網(wǎng)清理疏通承包合同(2篇)
- 二零二五版房產(chǎn)買賣合同含抵押權(quán)轉(zhuǎn)移及貸款利率協(xié)商協(xié)議0183篇
- 2025年度農(nóng)業(yè)科技推廣財產(chǎn)贈與合同3篇
- 高中英語名詞性從句講解
- 計算機(jī)二級wps題庫及答案
- 整套課件:工業(yè)催化
- 爆破安全管理知識培訓(xùn)
- 旅游地理學(xué)教案
- 煤矸石綜合利用途徑課件
- 企業(yè)信息公示聯(lián)絡(luò)員備案申請表
- 衛(wèi)生部關(guān)于發(fā)布《綜合醫(yī)院組織編制原則試行草案》的通知((78)衛(wèi)醫(yī)字第1689號)
- 挑戰(zhàn)杯生命科學(xué)獲獎作品范例
- 醫(yī)院崗位設(shè)置與人員編制標(biāo)準(zhǔn)
- 部編版八上語文古代詩歌鑒賞對比閱讀(含答案)
評論
0/150
提交評論