湖北省恩施一中、利川一中等四校2023-2024學年高二數(shù)學第一學期期末學業(yè)水平測試試題含解析_第1頁
湖北省恩施一中、利川一中等四校2023-2024學年高二數(shù)學第一學期期末學業(yè)水平測試試題含解析_第2頁
湖北省恩施一中、利川一中等四校2023-2024學年高二數(shù)學第一學期期末學業(yè)水平測試試題含解析_第3頁
湖北省恩施一中、利川一中等四校2023-2024學年高二數(shù)學第一學期期末學業(yè)水平測試試題含解析_第4頁
湖北省恩施一中、利川一中等四校2023-2024學年高二數(shù)學第一學期期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省恩施一中、利川一中等四校2023-2024學年高二數(shù)學第一學期期末學業(yè)水平測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“,”的否定形式是()A., B.,C., D.,2.以軸為對稱軸,拋物線通徑的長為8,頂點在坐標原點的拋物線的方程是()A. B.C.或 D.或3.阿基米德(公元前287年~公元前212年)不僅是著名的物理學家,也是著名的數(shù)學家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓C的對稱軸為坐標軸,焦點在y軸上,且橢圓C的離心率為,面積為6π,則橢圓C的標準方程為()A. B.C. D.4.拋物線的準線方程是()A. B.C. D.5.直線的傾斜角為()A.1 B.-1C. D.6.一個動圓與定圓相外切,且與直線相切,則動圓圓心的軌跡方程為()A. B.C. D.7.已知等差數(shù)列,且,則()A.3 B.5C.7 D.98.已知向量,,且,則值是()A. B.C. D.9.南宋數(shù)學家楊輝在《詳解九章算法》中討論過高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,而是逐項差數(shù)之差或者高次差相等.例如“百層球堆垛”:第一層有1個球,第二層有3個球,第三層有6個球,第四層有10個球,第五層有15個球,…,各層球數(shù)之差:,,,,…即2,3,4,5,…是等差數(shù)列.現(xiàn)有一個高階等差數(shù)列,其前6項分別為1,3,6,12,23,41,則該數(shù)列的第8項為()A.51 B.68C.106 D.15710.已知橢圓的左右焦點分別為,直線與C相交于M,N兩點(其中M在第一象限),若M,,N,四點共圓,且直線傾斜角不小于,則橢圓C的離心率e的取值范圍是()A. B.C. D.11.已知是雙曲線:的右焦點,是坐標原點,過作的一條漸近線的垂線,垂足為,并交軸于點.若,則的離心率為()A. B.C.2 D.12.在等差數(shù)列中,已知,則數(shù)列的前9項和為()A. B.13C.45 D.117二、填空題:本題共4小題,每小題5分,共20分。13.“五經”是《詩經》、《尚書》、《禮記》、《周易》、《春秋》的合稱,貴為中國文化經典著作,所載內容及哲學思想至今仍具有積極意義和參考價值.某校計劃開展“五經”經典誦讀比賽活動,某班有、兩位同學參賽,比賽時每位同學從這本書中隨機抽取本選擇其中的內容誦讀,則、兩位同學抽到同一本書的概率為______.14.拋物線的焦點坐標是______.15.設為等差數(shù)列的前n項和,若,,則______16.已知為橢圓上的一點,,分別為圓和圓上的點,則的最小值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)一位父親在孩子出生后,每月給小孩測量一次身高,得到前7個月的數(shù)據(jù)如下表所示.月齡1234567身高(單位:厘米)52566063656870(1)求小孩前7個月的平均身高;(2)求出身高y關于月齡x的回歸直線方程(計算結果精確到整數(shù)部分);(3)利用(2)的結論預測一下8個月的時候小孩的身高參考公式:18.(12分)已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)當時,設,求函數(shù)的單調區(qū)間.19.(12分)已知圓,點.(1)若,半徑為的圓過點,且與圓相外切,求圓的方程;(2)若過點的兩條直線被圓截得的弦長均為,且與軸分別交于點、,,求.20.(12分)如圖,在空間四邊形中,分別是的中點,分別在上,且(1)求證:四點共面;(2)設與交于點,求證:三點共線.21.(12分)設數(shù)列滿足(1)求的通項公式;(2)記數(shù)列的前項和為,是否存在實數(shù),使得對任意恒成立.22.(10分)已知等差數(shù)列滿足:,,數(shù)列的前n項和為(1)求及;(2)設是首項為1,公比為3的等比數(shù)列,求數(shù)列的前項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】特稱命題的否定是全稱命題【詳解】的否定形式是故選:A2、C【解析】由分焦點在軸的正半軸上和焦點在軸的負半軸上,兩種情況討論設出方程,根據(jù),即可求解.【詳解】由題意,拋物線的頂點在原點,以軸為對稱軸,且通經長為8,當拋物線的焦點在軸的正半軸上時,設拋物線的方程為,可得,解得,所以拋物線方程為;當拋物線的焦點在軸的負半軸上時,設拋物線的方程為,可得,解得,所以拋物線方程為,所以所求拋物線的方程為.故選:C.3、D【解析】設橢圓的方程為,根據(jù)題意得到和,求得的值,即可求解.【詳解】由題意,橢圓的焦點在軸上,可設橢圓的方程為,因為橢圓C的離心率為,可得,又由,即,解得,又因為橢圓的面積為,可得,即,聯(lián)立方程組,解答,所以橢圓方程為.故選:D.4、D【解析】將拋物線的方程化為標準方程,可得出該拋物線的準線方程.【詳解】拋物線的標準方程為,則,可得,因此,該拋物線的準線方程為.故選:D.5、C【解析】根據(jù)直線斜率的定義即可求解.【詳解】,斜率為1,則傾斜角為.故選:C.6、D【解析】根據(jù)點到直線的距離與點到點之間距離的關系化簡即可.【詳解】定圓的圓心,半徑為2,設動圓圓心P點坐標為(x,y),動圓的半徑為r,d為動圓圓心到直線的距離,即r,則根據(jù)兩圓相外切及直線與圓相切的性質可得,所以,化簡得:∴動圓圓心軌跡方程為故選:D7、B【解析】根據(jù)等差數(shù)列的性質求得正確答案.【詳解】由于數(shù)列是等差數(shù)列,所以.故選:B8、A【解析】求出向量,的坐標,利用向量數(shù)量積坐標表示即可求解.【詳解】因為向量,,所以,,因為,所以,解得:,故選:A.9、C【解析】對高階等差數(shù)列按其定義逐一進行構造數(shù)列,直到出現(xiàn)一般等差數(shù)列為止,再根據(jù)其遞推關系進行求解.【詳解】現(xiàn)有一個高階等差數(shù)列,其前6項分別為1,3,6,12,23,41,各項與前一項之差:,,,,,…即2,3,6,11,18,…,,,,,…即1,3,5,7,…是等差數(shù)列,所以,故選:C10、B【解析】設橢圓的半焦距為c,由橢圓的中心對稱性和圓的性質得以為直徑的圓與橢圓C有公共點,則有以,再根據(jù)直線傾斜角不小于得,由橢圓的定義得,由此可求得橢圓離心率的范圍.【詳解】解:設橢圓的半焦距為c,由橢圓的中心對稱性和M,,N,四點共圓得,四邊形必為一個矩形,即以為直徑的圓與橢圓C有公共點,所以,所以,所以,因為直線傾斜角不小于,所以直線傾斜角不小于,所以,化簡得,,因為,所以,所以,,又,因為,所以,所以,所以,所以.故選:B.11、A【解析】由條件建立a,b,c的關系,由此可求離心率的值.【詳解】設,則,∵,∴,∴,∴,∴,∴,∴離心率,故選:A.12、C【解析】根據(jù)給定的條件利用等差數(shù)列的性質計算作答【詳解】在等差數(shù)列中,因,所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】計算出、兩位同學各隨機抽出一本書的結果種數(shù),以及、兩位同學抽到同一本書的結果種數(shù),利用古典概型的概率公式可求得所求事件的概率.【詳解】、兩位同學抽到的結果都有種,由分步乘法計數(shù)原理可知,、兩位同學各隨機抽出一本書,共有種結果,而、兩位同學抽到同一本書的結果有種,故所求概率為.故答案為:.14、【解析】將拋物線的方程化為標準形式,即可求解出焦點坐標.【詳解】因為拋物線方程,焦點坐標為,且,所以焦點坐標為,故答案為:.15、36【解析】利用等差數(shù)列前n項和的性質進行求解即可.【詳解】因為為等差數(shù)列的前n項和,所以也成等差數(shù)列,即成等差數(shù)列,所以,故答案為:16、8【解析】根據(jù)橢圓的定義、點到圓上距離的最小值,即可得到答案;【詳解】設為橢圓的左右焦點,則,等號成立,當共線,共線,的最小值為,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)62;(2);(3)74.【解析】(1)直接利用平均數(shù)的計算公式即可求解;(2)套公式求出b、a,求出回歸方程;(3)把x=8代入回歸方程即可求出.【小問1詳解】小孩前7個月的平均身高為.【小問2詳解】(2)設回歸直線方程是.由題中的數(shù)據(jù)可知.,..計算結果精確到整數(shù)部分,所以,于是,所以身高y關于月齡x的回歸直線方程為.【小問3詳解】由(2)知,.當x=8時,y=3×8+50=74,所以預測8個月的時候小孩的身高為74厘米.18、(1);(2)增區(qū)間為,減區(qū)間為.【解析】(1)根據(jù)導數(shù)的幾何意義即可求解;(2)求g(x)導數(shù),導數(shù)同分分解因式,討論其正負即可判斷g(x)的單調性.【小問1詳解】當時,,則,又,設所求切線的斜率為,則,則切線的方程為:,化簡即得切線的方程為:.【小問2詳解】,其定義域為,,∵,∴ax+1>0,∴當時,;當時,.的增區(qū)間為,減區(qū)間為.19、(1)或(2)【解析】(1)設圓心,根據(jù)已知條件可得出關于、的方程組,解出、的值,即可得出圓的方程;(2)分析可知直線、的斜率存在,設過點且斜率存在的直線的方程為,即,利用勾股定理可得出,可知直線、的斜率、是關于的二次方程的兩根,求出、的坐標,結合韋達定理可求得的值.【小問1詳解】解:設圓心,圓的圓心為,由題意可得,解得或,因此,圓的方程為或.【小問2詳解】解:若過點的直線斜率不存在,則該直線的方程為,圓心到直線的距離為,不合乎題意.設過點且斜率存在的直線的方程為,即,由題意可得,整理可得,設直線、的斜率分別為、,則、為關于的二次方程的兩根,,由韋達定理可得,,在直線的方程中,令,可得,即點在直線的方程中,令,可得,即點,所以,,解得.20、(1)證明見解析;(2)證明見解析.【解析】(1)根據(jù)題意,利用中位線定理和線段成比例,先證明,進而證明問題;(2)先證明平面,平面,進而證明點P在兩個平面的交線上,然后證得結論.【小問1詳解】連接分別是的中點,.在中,.所以四點共面.【小問2詳解】,所以,又平面平面,同理:,平面平面,為平面與平面的一個公共點.又平面平面,即三點共線.21、(1)(2)存在【解析】(1)利用“退作差”法求得的通項公式.(2)利用裂項求和法求得,由此求得.【小問1詳解】依題意①,當時,.當時,②,①-②得,,時,上式也符合.所以.【小問2詳解】.所以.故存在實數(shù),使得對任意恒成立.22、(1);(2)【解析】(1)先根據(jù)已知求出,再求及.(2)先根據(jù)已知得到,再利用分組求和求數(shù)列的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論