吉林省百校聯(lián)盟2023-2024學年高二上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第1頁
吉林省百校聯(lián)盟2023-2024學年高二上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第2頁
吉林省百校聯(lián)盟2023-2024學年高二上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第3頁
吉林省百校聯(lián)盟2023-2024學年高二上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第4頁
吉林省百校聯(lián)盟2023-2024學年高二上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

吉林省百校聯(lián)盟2023-2024學年高二上數(shù)學期末教學質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的圖象過點,令.記數(shù)列的前n項和為,則()A. B.C. D.2.已知平面法向量為,,則直線與平面的位置關系為A. B.C.與相交但不垂直 D.3.不等式的解集為()A. B.C.或 D.或4.如圖,在長方體中,,E,F(xiàn)分別為的中點,則異面直線與所成角的余弦值為()A. B.C. D.5.圓的圓心為()A. B.C. D.6.若在1和16中間插入3個數(shù),使這5個數(shù)成等比數(shù)列,則公比為()A. B.2C. D.47.已知函數(shù),則的值為()A. B.C. D.8.已知是上的單調(diào)增函數(shù),則的取值范圍是A.﹣1b2 B.﹣1b2C.b﹣2或b2 D.b﹣1或b29.點到直線的距離為A.1 B.2C.3 D.410.已知是邊長為6的等邊所在平面外一點,,當三棱錐的體積最大時,三棱錐外接球的表面積為()A. B.C. D.11.圓心為的圓,在直線x﹣y﹣1=0上截得的弦長為,那么,這個圓的方程為()A. B.C. D.12.對于兩個平面、,“內(nèi)有無數(shù)多個點到的距離相等”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,直線與圓C交于A,B兩點,且,則______14.已知為坐標原點,等軸雙曲線的右焦點為,點在雙曲線上,由向雙曲線的漸近線作垂線,垂足分別為、,則四邊形的面積為______.15.已知一組數(shù)據(jù)的平均數(shù)為4,方差為3,若另一組數(shù)據(jù)的平均數(shù)為10,則該組數(shù)據(jù)的方差為_______.16.已知焦點為F的拋物線的方程為,點Q的坐標為,點P在拋物線上,則點P到y(tǒng)軸的距離與到點Q的距離的和的最小值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的方程為,點,過點的直線交拋物線于兩點(1)求△OAB面積的最小值(為坐標原點);(2)是否為定值?若是,求出該定值;若不是,說明理由18.(12分)已知函數(shù).(1)設x=2是函數(shù)f(x)的極值點,求a,并求f(x)的單調(diào)區(qū)間;(2)證明:當時,.19.(12分)已知數(shù)列的前項和是,且,等差數(shù)列中,(1)求數(shù)列的通項公式;(2)定義:記,求數(shù)列的前20項和20.(12分)設函數(shù).(1)當k=1時,求函數(shù)的單調(diào)區(qū)間;(2)當時,求函數(shù)在上的最小值m和最大值M.21.(12分)已知函數(shù)在處有極值.(1)求的值;(2)求函數(shù)在上的最大值與最小值.22.(10分)某公司舉辦捐步公益活動,參與者通過捐贈每天運動步數(shù)獲得公司提供的牛奶,再將牛奶捐贈給留守兒童.此活動不但為公益事業(yè)作出了較大的貢獻,還為公司獲得了相應的廣告效益,據(jù)測算,首日參與活動人數(shù)為5000人,以后每天人數(shù)比前一天都增加15%,30天后捐步人數(shù)穩(wěn)定在第30天的水平,假設此項活動的啟動資金為20萬元,每位捐步者每天可以使公司收益0.05元(以下人數(shù)精確到1人,收益精確到1元)(1)求活動開始后第5天的捐步人數(shù),及前5天公司的捐步總收益;(2)活動開始第幾天以后公司的捐步總收益可以收回啟動資金并有盈余?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由已知條件推導出,.由此利用裂項求和法能求出【詳解】解:由,可得,解得,則.∴,故選:【點睛】本題考查了函數(shù)的性質(zhì)、數(shù)列的“裂項求和”,考查了推理能力與計算能力,屬于中檔題2、A【解析】.本題選擇A選項.3、A【解析】先將分式不等式轉(zhuǎn)化為一元二次不等式,然后求解即可【詳解】由,得,解得,所以原不等式的解集為,故選:A4、A【解析】利用平行線,將異面直線的夾角問題轉(zhuǎn)化為共面直線的夾角問題,再解三角形.【詳解】取BC中點H,BH中點I,連接AI、FI、,因為E為中點,在長方體中,,所以四邊形是平行四邊形,所以所以,又因為F為的中點,所以,所以,則即為異面直線與所成角(或其補角).設AB=BC=4,則,則,,根據(jù)勾股定理:,,,所以是等腰三角形,所以.故B,C,D錯誤.故選:A.5、D【解析】由圓的標準方程求解.【詳解】圓的圓心為,故選:D6、A【解析】根據(jù)等比數(shù)列的通項得:,從而可求出.【詳解】解:成等比數(shù)列,∴根據(jù)等比數(shù)列的通項得:,,故選:A.7、C【解析】利用導數(shù)公式及運算法則求得,再求解【詳解】因為,所以,所以故選:C8、A【解析】利用三次函數(shù)的單調(diào)性,通過其導數(shù)進行研究,求出導數(shù),利用其導數(shù)恒大于0即可解決問題【詳解】∵∴∵函數(shù)是上的單調(diào)增函數(shù)∴在上恒成立∴,即.∴故選A.【點睛】可導函數(shù)在某一區(qū)間上是單調(diào)函數(shù),實際上就是在該區(qū)間上(或)(在該區(qū)間的任意子區(qū)間都不恒等于0)恒成立,然后分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值問題,從而獲得參數(shù)的取值范圍,本題是根據(jù)相應的二次方程的判別式來進行求解.9、B【解析】直接利用點到直線的距離公式得到答案.【詳解】,答案為B【點睛】本題考查了點到直線的距離公式,屬于簡單題.10、C【解析】由題意分析可得,當時三棱錐的體積最大,然后作圖,將三棱錐還原成正三棱柱,按照正三棱柱外接球半徑的計算方法來計算,即可計算出球半徑,從而完成求解.【詳解】由題意可知,當三棱錐的體積最大時是時,為正三角形,如圖所示,將三棱錐補成正三棱柱,該正三棱柱的外接球就是三棱錐的外接球,而正三棱柱的外接球球心落在上下底面外接圓圓心連線的中點上,設外接圓半徑為,三棱錐外接球半徑為,由正弦定理可得:,所以,,所以三棱錐外接球的表面積為.故選:C.11、A【解析】由垂徑定理,根據(jù)弦長的一半及圓心到直線的距離求出圓半徑,即可寫出圓的標準方程.【詳解】圓心到直線x﹣y﹣1=0的距離弦長,設圓半徑為r,則故r=2則圓的標準方程為故選:A【點睛】本題主要考查直線與圓的位置關系和圓的標準方程,屬于基礎題.12、B【解析】根據(jù)平面的性質(zhì)分別判斷充分性和必要性.【詳解】充分性:若內(nèi)有無數(shù)多個點到的距離相等,則、平行或相交,故充分性不成立;必要性:若,則內(nèi)每個點到的距離相等,故必要性成立,所以“內(nèi)有無數(shù)多個點到的距離相等”是“”的必要不充分條件.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】將圓的一般方程化為標準方程,結(jié)合垂徑定理和勾股定理表示出圓心到弦的距離,再由點到直線的距離公式表示出圓心到弦的距離,解方程即可求得的值.【詳解】解:將圓的方程化為標準方程可得,圓心為,半徑圓C與直線相交于、兩點,且,由垂徑定理和勾股定理得圓心到直線的距離為,由點到直線距離公式得,所以,解得,故答案為:.14、##【解析】求出雙曲線的方程,可求得雙曲線的兩條漸近線方程,分析可知四邊形為矩形,然后利用點到直線的距離公式以及矩形的面積公式可求得結(jié)果.【詳解】因為雙曲線為等軸雙曲線,則,,可得,所以,雙曲線的方程為,雙曲線的漸近線方程為,則雙曲線的兩條漸近線互相垂直,則,,,所以,四邊形為矩形,設點,則,不妨設點為直線上的點,則,,所以,.故答案為:.15、12【解析】根據(jù)題意,先通過原始數(shù)據(jù)的平均數(shù)、方差及新數(shù)據(jù)的平均數(shù)求出k,進而求出新數(shù)據(jù)的方差.【詳解】由題意,原式數(shù)據(jù)的平均數(shù)和方程分別為:,則新數(shù)據(jù)的平均數(shù),于是新數(shù)據(jù)的方差.故答案為:12.16、##【解析】利用定義將所求距離之和的最小值問題,轉(zhuǎn)化為的最小值問題.【詳解】焦點F坐標為,拋物線準線為,如圖,作垂直于準線于A,交y軸于B,.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)是,該定值.【解析】(1)根據(jù)弦長公式、點到直線距離公式,結(jié)合三角形面積公式進行求解即可;(2)根據(jù)兩點間距離公式,結(jié)合一元二次方程根與系數(shù)的關系進行求解即可.【小問1詳解】顯然直線存在斜率,設直線的方程為:,所以有,設,則有,,原點到直線的距離為:,△OAB的面積為:,當時,有最小值,最小值為;【小問2詳解】是定值,理由如下:由(1)可知:,,【點睛】關鍵點睛:利用一元二次方程根與系數(shù)關系是解題的關鍵.18、(1),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)證明見解析;【解析】(1)求出函數(shù)的定義域與導函數(shù),依題意可得,即可求出參數(shù)的值,再根據(jù)導函數(shù)與函數(shù)的單調(diào)性的關系求出函數(shù)的單調(diào)區(qū)間;(2)依題意可得,令,即證,,又,所以即證,令,利用導數(shù)說明其單調(diào)性,即可得解;【詳解】解:(1)因為,定義域為,所以,因為是函數(shù)的極值點,所以,所以,解得,所以,令,則,所以在上單調(diào)遞增,又,所以當時,,即,所以在上單調(diào)遞減,當時,,即,所以上單調(diào)遞增,綜上可得的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)證明:依題意即證,即證,令,則,所以即證,因為,所以即證,令,則,所以當時,,當時,所以,所以,所以當時,19、(1);(2)【解析】(1)利用求得遞推關系得等比數(shù)列,從而得通項公式,再由等差數(shù)列的基本時法求得通項公式;(2)根據(jù)定義求得,然后分組求和法求得和【小問1詳解】由題意,當時,兩式相減,得,即是首項為3,公比為3的等比數(shù)列設數(shù)列的公差為,小問2詳解】由20、(1)增區(qū)間為(2),【解析】(1)求導,由判別式可判斷導數(shù)符號,然后可得;(2)求導,求導數(shù)零點,比較函數(shù)極值和端點函數(shù)值,結(jié)合單調(diào)性可得.【小問1詳解】因為,所以,,因為,所以恒成立所以的增區(qū)間為.【小問2詳解】當時,,令,解得,當時,,當時,,當時,所以,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.因為,所以在區(qū)間上的最大值,最小值為21、(1),;(2)最大值為,最小值為【解析】(1)對函數(shù)求導,根據(jù)函數(shù)在處取極值得出,再由極值為,得出,構造一個關于的二元一次方程組,便可解出的值;(2)由(1)可知,求出,利用導數(shù)研究函數(shù)在上的單調(diào)性,比較極值和端點值的大小,即可得出在上的最大值與最小值.【詳解】解:(1)由題可知,,的定義域為,,由于在處有極值,則,即,解得:,,(2)由(1)可知,其定義域是,,令,而,解得,由,得;由,得,則在區(qū)間上,,,的變化情況表如下:120單調(diào)遞減單調(diào)遞增可得,,,由于,則,所以,函數(shù)在區(qū)間上的最大值為,最小值為.【點睛】本題考查已知極值求參數(shù)值和函數(shù)在閉區(qū)間內(nèi)的最值問題,考查利用導函數(shù)研究函數(shù)在給定閉區(qū)間內(nèi)的單調(diào)性,以及通過比較極值和端點值確定函數(shù)在閉區(qū)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論