江西省贛州市石城縣石城中學2024屆高二數(shù)學第一學期期末達標檢測模擬試題含解析_第1頁
江西省贛州市石城縣石城中學2024屆高二數(shù)學第一學期期末達標檢測模擬試題含解析_第2頁
江西省贛州市石城縣石城中學2024屆高二數(shù)學第一學期期末達標檢測模擬試題含解析_第3頁
江西省贛州市石城縣石城中學2024屆高二數(shù)學第一學期期末達標檢測模擬試題含解析_第4頁
江西省贛州市石城縣石城中學2024屆高二數(shù)學第一學期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西省贛州市石城縣石城中學2024屆高二數(shù)學第一學期期末達標檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,一圓形紙片的圓心為O,F(xiàn)是圓內一定點,M是圓周上一動點,把紙片折疊使M與F重合,然后抹平紙片,折痕為CD,設CD與OM交于點P,則點P的軌跡是()A.圓 B.雙曲線C.拋物線 D.橢圓2.關于實數(shù)a,b,c,下列說法正確的是()A.如果,則,,成等差數(shù)列B.如果,則,,成等比數(shù)列C.如果,則,,成等差數(shù)列D.如果,則,,成等差數(shù)列3.已知是兩個數(shù)1,9的等比中項,則圓錐曲線的離心率為()A.或 B.或C. D.4.已知數(shù)列為等比數(shù)列,,則的值為()A. B.C. D.25.在等比數(shù)列中,若,則公比()A. B.C.2 D.36.設R,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.若,則與的大小關系是()A. B.C. D.不能確定8.下列直線中,傾斜角為45°的是()A. B.C. D.9.某機構通過抽樣調查,利用列聯(lián)表和統(tǒng)計量研究患肺病是否與吸煙有關,計算得,經查對臨界值表知,,現(xiàn)給出四個結論,其中正確的是()A.因為,故有90%的把握認為“患肺病與吸煙有關"B.因為,故有95%把握認為“患肺病與吸煙有關”C.因為,故有90%的把握認為“患肺病與吸煙無關”D.因為,故有95%的把握認為“患肺病與吸煙無關”10.命題“?x∈[1,2],x2-a≤0”為真命題的一個充分不必要條件是()A.a≥4 B.a≤4C.a≥5 D.a≤511.正方體的棱長為,為側面內動點,且滿足,則△面積的最小值為()A. B.C. D.12.已知橢圓方程為,點在橢圓上,右焦點為F,過原點的直線與橢圓交于A,B兩點,若,則橢圓的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,圖形中的圓是正方形的內切圓,點E,F(xiàn),G,H為對角線與圓的交點,若向正方形內隨機投入一點,則該點落在陰影部分區(qū)域內的概率為_________14.已知點P是雙曲線右支上的一點,且以點P及焦點為定點的三角形的面積為4,則點P的坐標是_____________15.曲線在點處的切線的方程為__________.16.已知長方體的棱,則異面直線與所成角的大小是________________.(結果用反三角函數(shù)值表示)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知命題;命題.(1)若p是q的充分條件,求m的取值范圍;(2)當時,已知是假命題,是真命題,求x的取值范圍.18.(12分)如圖,在直三棱柱中,平面?zhèn)让?,?(1)求證:;(2)若直線與平面所成的角為,請問在線段上是否存在點,使得二面角的大小為,若存在請求出的位置,不存在請說明理由.19.(12分)在如圖三角形數(shù)陣中第n行有n個數(shù),表示第i行第j個數(shù),例如,表示第4行第3個數(shù).該數(shù)陣中每一行的第一個數(shù)從上到下構成以m為公差的等差數(shù)列,從第三行起每一行的數(shù)從左到右構成以m為公比的等比數(shù)列(其中).已知.(1)求m及;(2)記,求.20.(12分)已知在△中,角A,B,C的對邊分別是a,b,c,且.(1)求角C的大小;(2)若,求△的面積S的最大值.21.(12分)(1)已知:方程表示雙曲線;:關于的不等式有解.若為真,求的取值范圍;(2)已知,,.若p是q的必要不充分條件,求實數(shù)m的取值范圍.22.(10分)已知函數(shù)(1)若函數(shù)的圖象在點處的切線與平行,求b的值;(2)在(1)的條件下證明:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意知,所以,故點P的軌跡是橢圓.【詳解】由題意知,關于CD對稱,所以,故,可知點P的軌跡是橢圓.【點睛】本題主要考查了橢圓的定義,屬于中檔題.2、B【解析】根據(jù)給定條件結合取特值、推理計算等方法逐一分析各個選項并判斷即可作答.【詳解】對于A,若,取,而,即,,不成等差數(shù)列,A不正確;對于B,若,則,即,,成等比數(shù)列,B正確;對于C,若,取,而,,,不成等差數(shù)列,C不正確;對于D,a,b,c是實數(shù),若,顯然都可以為負數(shù)或者0,此時a,b,c無對數(shù),D不正確.故選:B3、A【解析】根據(jù)題意可知,當時,根據(jù)橢圓離心率公式,即可求出結果;當時,根據(jù)雙曲線離心率公式,即可求出結果.【詳解】因為是兩個數(shù)1,9的等比中項,所以,所以,當時,圓錐曲線,其離心率為;當時,圓錐曲線,其離心率為;綜上,圓錐曲線的離心率為或.故選:A.4、B【解析】根據(jù)等比數(shù)列的性質計算.【詳解】由等比數(shù)列的性質可知,且等比數(shù)列奇數(shù)項的符號相同,所以,即.故選:B5、C【解析】由題得,化簡即得解.【詳解】因為,所以,所以,解得.故選:C6、A【解析】根據(jù)不等式性質判斷即可.【詳解】若“”,則成立;反之,若,當,時,不一定成立.如,但.故“”是“”的充分不必要條件.故答案為:A.【點睛】本題考查充分條件、必要調價的判斷,考查不等式與不等關系,屬于基礎題.7、B【解析】由題知,進而研究的符號即可得答案.詳解】解:,所以,即.故選:B8、C【解析】由直線傾斜角得出直線斜率,再由直線方程求出直線斜率,即可求解.【詳解】由直線傾斜角為45°,可知直線的斜率為,對于A,直線斜率為,對于B,直線無斜率,對于C,直線斜率,對于D,直線斜率,故選:C9、A【解析】根據(jù)給定條件利用獨立性檢驗的知識直接判斷作答.【詳解】因,且,由臨界值表知,,,所以有90%的把握認為“患肺病與吸煙有關”,則A正確,C不正確;.因臨界值3.841>3.305,則不能確定有95%的把握認為“患肺病與吸煙有關”,也不能確定有95%的把握認為“患肺病與吸煙無關”,即B,D都不正確.故選:A10、C【解析】先要找出命題為真命題的充要條件,從集合的角度充分不必要條件應為的真子集,由選擇項不難得出答案【詳解】命題“?x∈[1,2],x2-a≤0”為真命題,可化為?x∈[1,2],恒成立即只需,即命題“?x∈[1,2],x2-a≤0”為真命題的的充要條件為,而要找的一個充分不必要條件即為集合的真子集,由選擇項可知C符合題意.故選:C11、B【解析】建立空間直角坐標系如圖所示,設由,得出點的軌跡方程,由幾何性質求得,再根據(jù)垂直關系求出△面積的最小值【詳解】以點為原點,分別為軸建立空間直角坐標系,如圖所示:則,,設所以,得,所以因為平面,所以故△面積的最小值為故選:B12、A【解析】根據(jù)橢圓的性質可得,則橢圓方程可求.【詳解】由點在橢圓上得,由橢圓的對稱性可得,則,故橢圓方程為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用幾何概型概率計算公式,計算得所求概率.【詳解】設正方形的邊長為2,則陰影部分的面積為,故若向正方形內隨機投入一點,則該點落在陰影部分區(qū)域內概率為故答案為:.14、【解析】由題可得P到x軸的距離為1,把代入,得,可得P點坐標【詳解】設,由題意知,所以,則,由題意可得,把代入,得,所以P點坐標為故答案為:15、【解析】求出導函數(shù),得切線斜率后可得切線方程【詳解】,∴切線斜率為,切線方程為故答案為:16、【解析】建立空間直角坐標系,求出異面直線與的方向向量,再求出兩向量的夾角,進而可得異面直線與所成角的大小【詳解】解:建立如圖所示的空間直角坐標系:在長方體中,,,,,,,,,,異面直線與所成角的大小是故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)解不等式組即得解;(2)由題得p、q一真一假,分兩種情況討論得解.【小問1詳解】解:由題意知p是q的充分條件,即p集合包含于q集合,有;【小問2詳解】解:當時,有,由題意知,p、q一真一假,當p真q假時,,當p假q真時,,綜上,x的取值范圍為18、(1)證明見解析(2)存在,點E為線段中點【解析】(1)通過作輔助線結合面面垂直的性質證明側面,從而證明結論;(2)建立空間直角坐標系,求出相關點的坐標,再求相關的向量坐標,求平面的法向量,利用向量的夾角公式求得答案.【小問1詳解】證明:連接交于點,因,則由平面?zhèn)让?,且平面?zhèn)让?,得平面,又平面,所以三棱柱是直三棱柱,則底面ABC,所以.又,從而側面,又側面,故.【小問2詳解】由(1).平面,則直線與平面所成的角,所以,又,所以假設在線段上是否存在一點E,使得二面角的大小為,由是直三棱柱,所以以點A為原點,以AC、所在直線分別為x,z軸,以過A點和AC垂直的直線為y軸,建立空間直角坐標系,如圖所示,則,且設,,得所以,設平面的一個法向量,由,得:,取,由(1)知平面,所以平面的一個法向量,所以,解得,∴點E為線段中點時,二面角的大小為.19、(1),;(2)【解析】(1)根據(jù)題意以m表示出,由即可求出,進而求出;(2)根據(jù)等差數(shù)列和等比數(shù)列的通項公式求出,再利用錯位相減法即可求出.【詳解】(1)由已知得,,,,,即,又,,,;(2)由(1)得,當時,,又,,滿足,,,兩式相減得,.【點睛】方法點睛:數(shù)列求和的常用方法:(1)對于等差等比數(shù)列,利用公式法可直接求解;(2)對于結構,其中是等差數(shù)列,是等比數(shù)列,用錯位相減法求和;(3)對于結構,利用分組求和法;(4)對于結構,其中是等差數(shù)列,公差為,則,利用裂項相消法求和.20、(1);(2).【解析】(1)由正弦定理、和角正弦公式及三角形內角的性質可得,進而可得C的大??;(2)由余弦定理可得,根據(jù)基本不等式可得,由三角形面積公式求面積的最大值,注意等號成立條件.【小問1詳解】由正弦定理知:,∴,又,∴,則,故.【小問2詳解】由,又,則,∴,當且僅當時等號成立,∴△的面積S的最大值為.21、(1)1m2;(2)(0,1]【解析】(1)由pq為真,可得p真且q假,然后分別求出p真,q假時的的取值范圍,再求交集即可,(2)求得p:1x2,再由p是q的必要不充分條件,得,解不等式組可求得答案【詳解】(1)因為pq為真,所以p真且q假,p真:m1m301m3,q假,則不等式無解,則402m2,所以1m2.(2)依題意,p:1x2,因p是q的必要不充分條件,于是得(不同時取等號),解得0m1,所以實數(shù)m的取值范圍是(0,1].22、(1);(2)證明見解析.【解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論