江西省臨川市2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁(yè)
江西省臨川市2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁(yè)
江西省臨川市2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁(yè)
江西省臨川市2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁(yè)
江西省臨川市2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江西省臨川市2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.當(dāng)圓的圓心到直線的距離最大時(shí),()A B.C. D.2.命題“若,則”為真命題,那么不可能是()A. B.C. D.3.給出如下四個(gè)命題正確的是()①方程表示的圖形是圓;②橢圓的離心率;③拋物線的準(zhǔn)線方程是;④雙曲線的漸近線方程是A.③ B.①③C.①④ D.②③④4.已知向量,若,則()A. B.5C.4 D.5.函數(shù)的定義域?yàn)?,其?dǎo)函數(shù)的圖像如圖所示,則函數(shù)極值點(diǎn)的個(gè)數(shù)為()A.2 B.3C.4 D.56.圍棋起源于中國(guó),據(jù)先秦典籍世本記載:“堯造圍棋,丹朱善之”,至今已有四千多年歷史.圍棋不僅能抒發(fā)意境、陶冶情操、修身養(yǎng)性、生慧增智,而且還與天象易理、兵法策略、治國(guó)安邦等相關(guān)聯(lián),蘊(yùn)含著中華文化的豐富內(nèi)涵.在某次國(guó)際圍棋比賽中,規(guī)定甲與乙對(duì)陣,丙與丁對(duì)陣,兩場(chǎng)比賽的勝者爭(zhēng)奪冠軍,根據(jù)以往戰(zhàn)績(jī),他們之間相互獲勝的概率如下:甲乙丙丁甲獲勝概率乙獲勝概率丙獲勝概率丁獲勝概率則甲最終獲得冠軍的概率是()A.0.165 B.0.24C.0.275 D.0.367.若復(fù)數(shù)滿足,則復(fù)數(shù)對(duì)應(yīng)的點(diǎn)的軌跡圍成圖形的面積等于()A. B.C. D.8.在遞增等比數(shù)列中,為其前n項(xiàng)和.已知,,且,則數(shù)列的公比為()A.3 B.4C.5 D.69.在三棱錐中,點(diǎn)E,F(xiàn)分別是的中點(diǎn),點(diǎn)G在棱上,且滿足,若,則()A. B.C. D.10.若命題“或”與命題“非”都是真命題,則A.命題與命題都是真命題B.命題與命題都是假命題C.命題是真命題,命題是假命題D.命題是假命題,命題是真命題11.平面上動(dòng)點(diǎn)到點(diǎn)的距離與它到直線的距離之比為,則動(dòng)點(diǎn)的軌跡是()A.雙曲線 B.拋物線C.橢圓 D.圓12.傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家用沙粒和小石子研究數(shù),他們根據(jù)沙粒和石子所排列的形狀把數(shù)分成許多類,若:三角形數(shù)、、、、,正方形數(shù)、、、、等等.如圖所示為正五邊形數(shù),將五邊形數(shù)按從小到大的順序排列成數(shù)列,則此數(shù)列的第4項(xiàng)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)變量x,y滿足約束條件則的最大值為___________.14.將邊長(zhǎng)為2的正方形繞其一邊所在的直線旋轉(zhuǎn)一周,所得的圓柱體積為________.15.直線與兩坐標(biāo)軸相交于,兩點(diǎn),則線段的垂直平分線的方程為___________.16.已知直線與雙曲線交于兩點(diǎn),則該雙曲線的離心率的取值范圍是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓F:經(jīng)過點(diǎn)且離心率為,直線和是分別過橢圓F的左、右焦點(diǎn)的兩條動(dòng)直線,它們與橢圓分別相交于點(diǎn)A、B和C、D,O為坐標(biāo)原點(diǎn),直線AB和直線CD相交于M.記直線的斜率分別為,且(1)求橢圓F的標(biāo)準(zhǔn)方程(2)是否存在定點(diǎn)P,Q,使得為定值.若存在,請(qǐng)求出P、Q的坐標(biāo),若不存在,請(qǐng)說明理由18.(12分)甲、乙兩人參加普法知識(shí)競(jìng)賽,共有5題,選擇題(1)甲、乙兩人中有一個(gè)抽到選擇題(2)甲、乙兩人中至少有一人抽到選擇題19.(12分)已知圓心為的圓過原點(diǎn),且直線與圓相切于點(diǎn).(1)求圓的方程;(2)已知過點(diǎn)的直線的斜率為,且直線與圓相交于兩點(diǎn).①若,求弦的長(zhǎng);②若圓上存在點(diǎn),使得成立,求直線的斜率.20.(12分)直線經(jīng)過點(diǎn),且與圓相交與兩點(diǎn),截得的弦長(zhǎng)為,求的方程.21.(12分)如圖,直三棱柱中,,,是棱的中點(diǎn),(1)求異面直線所成角的余弦值;(2)求二面角的余弦值22.(10分)在數(shù)列中,,,數(shù)列滿足(1)求證:數(shù)列是等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)數(shù)列前項(xiàng)和為,且滿足,求的表達(dá)式;(3)令,對(duì)于大于的正整數(shù)、(其中),若、、三個(gè)數(shù)經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列,求符合條件的數(shù)組.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】求出圓心坐標(biāo)和直線過定點(diǎn),當(dāng)圓心和定點(diǎn)的連線與直線垂直時(shí)滿足題意,再利用兩直線垂直,斜率乘積為-1求解即可.【詳解】解:因?yàn)閳A的圓心為,半徑,又因?yàn)橹本€過定點(diǎn)A(-1,1),故當(dāng)與直線垂直時(shí),圓心到直線的距離最大,此時(shí)有,即,解得.故選:C.2、D【解析】根據(jù)命題真假的判斷,對(duì)四個(gè)選項(xiàng)一一驗(yàn)證即可.【詳解】對(duì)于A:若,則必成立;對(duì)于B:若,則必成立;對(duì)于C:若,則必成立;對(duì)于D:由不能得出,所以不可能是.故選:D3、A【解析】對(duì)選項(xiàng)①,根據(jù)圓一般方程求解即可判斷①錯(cuò)誤,對(duì)選項(xiàng)②,求出橢圓離心率即可判斷②錯(cuò)誤,對(duì)③,求出拋物線漸近線即可判斷③正確,對(duì)④,求出雙曲線漸近線方程即可判斷④錯(cuò)誤?!驹斀狻繉?duì)于①選項(xiàng),,,故①錯(cuò)誤;對(duì)于②選項(xiàng),由題知,所以,所以離心率,故②錯(cuò)誤;對(duì)于③選項(xiàng),拋物線化為標(biāo)準(zhǔn)形式得拋物線,故準(zhǔn)線方程是,故③正確;對(duì)于④選項(xiàng),雙曲線化為標(biāo)準(zhǔn)形式得,所以,焦點(diǎn)在軸上,故漸近線方程是,故④錯(cuò)誤.故選:A4、B【解析】根據(jù)向量垂直列方程,化簡(jiǎn)求得.【詳解】由于,所以.故選:B5、C【解析】根據(jù)給定的導(dǎo)函數(shù)的圖象,結(jié)合函數(shù)的極值的定義,即可求解.【詳解】如圖所示,設(shè)導(dǎo)函數(shù)的圖象與軸的交點(diǎn)分別為,根據(jù)函數(shù)的極值的定義可知在該點(diǎn)處的左右兩側(cè)的導(dǎo)數(shù)符號(hào)相反,可得為函數(shù)的極大值點(diǎn),為函數(shù)的極小值點(diǎn),所以函數(shù)極值點(diǎn)的個(gè)數(shù)為4個(gè).故選:C.6、B【解析】先求出甲第一輪勝出的概率,再求出甲第二輪勝出的概率,即可得出結(jié)果.【詳解】甲最終獲得冠軍的概率,故選:B.7、D【解析】利用復(fù)數(shù)的幾何意義,即可判斷軌跡圖形,再求面積.【詳解】復(fù)數(shù)滿足,表示復(fù)數(shù)對(duì)應(yīng)的點(diǎn)的軌跡是以點(diǎn)為圓心,半徑為3的圓,所以圍成圖形的面積等于.故選:D8、B【解析】由已知結(jié)合等比數(shù)列的性質(zhì)可求出、,然后結(jié)合等比數(shù)列的求和公式求解即可.【詳解】解:由題意得:是遞增等比數(shù)列又,,故故選:B9、B【解析】利用空間向量的加、減運(yùn)算即可求解.【詳解】由題意可得故選:B.10、D【解析】因?yàn)榉莗為真命題,所以p為假命題,又p或q為真命題,所以q為真命題,選D.11、A【解析】設(shè)點(diǎn),利用距離公式化簡(jiǎn)可得出點(diǎn)的軌跡方程,即可得出動(dòng)點(diǎn)的軌跡圖形.【詳解】設(shè)點(diǎn),由題意可得,化簡(jiǎn)可得,即,曲線為反比例函數(shù)圖象,故動(dòng)點(diǎn)的軌跡是雙曲線.故選:A.12、D【解析】根據(jù)前三個(gè)五邊形數(shù)可推斷出第四個(gè)五邊形數(shù).【詳解】第一個(gè)五邊形數(shù)為,第二個(gè)五邊形數(shù)為,第三個(gè)五邊形數(shù)為,故第四個(gè)五邊形數(shù)為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)線性約束條件畫出可行域,把目標(biāo)函數(shù)轉(zhuǎn)化為,然后根據(jù)直線在軸上截距最大時(shí)即可求出答案.【詳解】畫出可行域,如圖,由,得,由圖可知,當(dāng)直線過點(diǎn)時(shí),有最大值,且最大值為.故答案為:.14、【解析】依題意可得圓柱的底面半徑、高,再根據(jù)圓柱的體積公式計(jì)算可得;【詳解】解:依題意可得圓柱的底面半徑,高,所以;故答案為:15、【解析】由直線的方程求出直線的斜率以及,兩點(diǎn)坐標(biāo),進(jìn)而可得線段的垂直平分線的斜率以及線段的中點(diǎn)坐標(biāo),利用點(diǎn)斜式即可求解.【詳解】由直線可得,所以直線的斜率為,所以線段的垂直平分線的斜率為,令可得;令可得;即,,所以線段的中點(diǎn)坐標(biāo)為,所以線段的垂直平分線的方程為,整理得.故答案為:.16、【解析】分析可知,由可求得結(jié)果.【詳解】雙曲線的漸近線方程為,由題意可知,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在點(diǎn),使得為定值.【解析】(1)設(shè),,,結(jié)合條件即求;(2)由題可設(shè)直線方程,利用韋達(dá)定理法可得,再結(jié)合條件可得點(diǎn)的軌跡方程為,然后利用橢圓的定義即得結(jié)論.【小問1詳解】設(shè),,,橢圓方程為:,橢圓過點(diǎn),,解得t=1,所以橢圓F的方程是【小問2詳解】由題可得焦點(diǎn)的坐標(biāo)分別為,當(dāng)直線AB或CD的斜率不存在時(shí),點(diǎn)M的坐標(biāo)為或,當(dāng)直線AB和CD的斜率都存在時(shí),設(shè)斜率分別為,點(diǎn),直線AB為,聯(lián)立,得則,,同理可得,,因?yàn)?,所以,化?jiǎn)得由題意,知,所以設(shè)點(diǎn),則,所以,化簡(jiǎn)得,當(dāng)直線或的斜率不存在時(shí),點(diǎn)M的坐標(biāo)為或,也滿足此方程所以點(diǎn)在橢圓上,根據(jù)橢圓定義可知,存在定點(diǎn),使得為定值【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的關(guān)鍵是利用韋達(dá)定理法及題設(shè)條件求出點(diǎn)M的軌跡方程,再結(jié)合橢圓的定義,從而問題得到解決.18、(1)(2)【解析】首先用列舉法,求得甲、乙兩人各抽一題的所有可能情況.(1)根據(jù)上述分析,分別求得“甲抽到判斷題,乙抽到選擇題(2)根據(jù)上述分析,求得“甲、乙兩人都抽到判斷題”的概率,根據(jù)對(duì)立事件概率計(jì)算公司求得“甲、乙兩人中至少有一人抽到選擇題【詳解】把3個(gè)選擇題因此基本事件的總數(shù)為.(1)記“甲抽到選擇題(2)記“甲、乙兩人至少有一人抽到選擇題【點(diǎn)睛】本小題主要考查互斥事件概率計(jì)算,考查對(duì)立事件,屬于基礎(chǔ)題.19、(1);(2)①,②.【解析】(1)圓心在線段的垂直平分線上,圓心也在過點(diǎn)且與垂直的直線上,聯(lián)立求圓心,進(jìn)而得半徑即可;(2)①垂徑定理即可求弦長(zhǎng);②圓上存在點(diǎn),使得成立,即四邊形是平行四邊形,又,有都是等邊三角形,進(jìn)而得圓心到直線的距離為,列方程求解即可.試題解析:(1)由已知得,圓心在線段的垂直平分線上,圓心也在過點(diǎn)且與垂直的直線上,由得圓心,所以半徑,所以圓的方程為;(2)①由題意知,直線的方程為,即,∴圓心到直線的距離為,∴;②∵圓上存在點(diǎn),使得成立,∴四邊形是平行四邊形,又,∴都是等邊三角形,∴圓心到直線的距離為,又直線的方程為,即,∴,解得.20、或【解析】直線截圓得的弦長(zhǎng)為,結(jié)合圓的半徑為5,利用勾股定理可得圓心到直線的距離,再利用點(diǎn)到直線的距離公式列方程求出直線斜率,由點(diǎn)斜式可得結(jié)果.【詳解】設(shè)直線的方程為,即,因?yàn)閳A的半徑為5,截得的弦長(zhǎng)為所以圓心到直線的距離,即或,∴所求直線的方程為或.【點(diǎn)睛】本題主要考查點(diǎn)到直線距離公式以及圓的弦長(zhǎng)的求法,求圓的弦長(zhǎng)有兩種方法:一是利用弦長(zhǎng)公式,結(jié)合韋達(dá)定理求解;二是利用半弦長(zhǎng),弦心距,圓半徑構(gòu)成直角三角形,利用勾股定理求解.21、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,求出相關(guān)各點(diǎn)坐標(biāo),求出,利用向量的夾角公式求得答案;(2)求出平面平面和平面的一個(gè)法向量,利用向量夾角公式求得答案.【小問1詳解】以為正交基底,建立如圖所示的空間直角坐標(biāo)系,則,,所以,所以直線所成角的余弦值為;【小問2詳解】設(shè)為平面的一個(gè)法向量,,則m?,同理,則,可取平面的一個(gè)法向量為,則,由圖可知二面角為銳角,所以二面角的余弦值為.22、(1)證明見解析,;(2);(3).【解析】(1)由已知等式變形可得,利用等比數(shù)列的定義可證得結(jié)論成立,確定等比數(shù)列的首項(xiàng)和公比,可求得數(shù)列的通項(xiàng)公式;(2)求得,然后分、兩種情況討論,結(jié)合裂項(xiàng)相消法可得

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論