版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
營(yíng)口市重點(diǎn)中學(xué)2023屆高三下學(xué)期第二次調(diào)研模擬數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若點(diǎn)x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(nèi)(包括邊界),則A.-3,1 B.-3,5 C.-∞,-32.小明有3本作業(yè)本,小波有4本作業(yè)本,將這7本作業(yè)本混放在-起,小明從中任取兩本.則他取到的均是自己的作業(yè)本的概率為()A. B. C. D.3.在中,為上異于,的任一點(diǎn),為的中點(diǎn),若,則等于()A. B. C. D.4.某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,年家庭總收入的各種用途占比統(tǒng)計(jì)如圖中的條形圖,已知年的就醫(yī)費(fèi)用比年的就醫(yī)費(fèi)用增加了元,則該人年的儲(chǔ)畜費(fèi)用為()A.元 B.元 C.元 D.元5.某地區(qū)高考改革,實(shí)行“3+2+1”模式,即“3”指語(yǔ)文、數(shù)學(xué)、外語(yǔ)三門(mén)必考科目,“1”指在物理、歷史兩門(mén)科目中必選一門(mén),“2”指在化學(xué)、生物、政治、地理以及除了必選一門(mén)以外的歷史或物理這五門(mén)學(xué)科中任意選擇兩門(mén)學(xué)科,則一名學(xué)生的不同選科組合有()A.8種 B.12種 C.16種 D.20種6.已知集合,,則()A. B.C. D.7.設(shè)實(shí)數(shù)x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.48.已知復(fù)數(shù),其中,,是虛數(shù)單位,則()A. B. C. D.9.已知函數(shù),若時(shí),恒成立,則實(shí)數(shù)的值為()A. B. C. D.10.已知函數(shù)的圖象在點(diǎn)處的切線方程是,則()A.2 B.3 C.-2 D.-311.已知直三棱柱中,,,,則異面直線與所成的角的正弦值為().A. B. C. D.12.下列函數(shù)中,在定義域上單調(diào)遞增,且值域?yàn)榈氖牵ǎ〢. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知變量(m>0),且,若恒成立,則m的最大值________.14.已知,,求____________.15.曲線在處的切線的斜率為_(kāi)_______.16.四面體中,底面,,,則四面體的外接球的表面積為_(kāi)_____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,是矩形,的頂點(diǎn)在邊上,點(diǎn),分別是,上的動(dòng)點(diǎn)(的長(zhǎng)度滿足需求).設(shè),,,且滿足.(1)求;(2)若,,求的最大值.18.(12分)已知函數(shù),,使得對(duì)任意兩個(gè)不等的正實(shí)數(shù),都有恒成立.(1)求的解析式;(2)若方程有兩個(gè)實(shí)根,且,求證:.19.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線極坐標(biāo)方程為.若直線交曲線于,兩點(diǎn),求線段的長(zhǎng).20.(12分)已知函數(shù)(為實(shí)常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實(shí)數(shù)的取值范圍.21.(12分)的內(nèi)角,,的對(duì)邊分別是,,,已知.(1)求角;(2)若,,求的面積.22.(10分)設(shè)函數(shù),.(1)求函數(shù)的極值;(2)對(duì)任意,都有,求實(shí)數(shù)a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
畫(huà)出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內(nèi)的點(diǎn)(x,y)【詳解】畫(huà)出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內(nèi)的點(diǎn)(x,y)和定點(diǎn)P(2,-1)設(shè)k=y+1x-2,結(jié)合圖形可得k≥k由題意得點(diǎn)A,B的坐標(biāo)分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點(diǎn)睛】解答本題的關(guān)鍵有兩個(gè):一是根據(jù)數(shù)形結(jié)合的方法求解問(wèn)題,即把y+1x-22、A【解析】
利用計(jì)算即可,其中表示事件A所包含的基本事件個(gè)數(shù),為基本事件總數(shù).【詳解】從7本作業(yè)本中任取兩本共有種不同的結(jié)果,其中,小明取到的均是自己的作業(yè)本有種不同結(jié)果,由古典概型的概率計(jì)算公式,小明取到的均是自己的作業(yè)本的概率為.故選:A.【點(diǎn)睛】本題考查古典概型的概率計(jì)算問(wèn)題,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.3、A【解析】
根據(jù)題意,用表示出與,求出的值即可.【詳解】解:根據(jù)題意,設(shè),則,又,,,故選:A.【點(diǎn)睛】本題主要考查了平面向量基本定理的應(yīng)用,關(guān)鍵是要找到一組合適的基底表示向量,是基礎(chǔ)題.4、A【解析】
根據(jù)2018年的家庭總收人為元,且就醫(yī)費(fèi)用占得到就醫(yī)費(fèi)用,再根據(jù)年的就醫(yī)費(fèi)用比年的就醫(yī)費(fèi)用增加了元,得到年的就醫(yī)費(fèi)用,然后由年的就醫(yī)費(fèi)用占總收人,得到2019年的家庭總收人再根據(jù)儲(chǔ)畜費(fèi)用占總收人求解.【詳解】因?yàn)?018年的家庭總收人為元,且就醫(yī)費(fèi)用占所以就醫(yī)費(fèi)用因?yàn)槟甑木歪t(yī)費(fèi)用比年的就醫(yī)費(fèi)用增加了元,所以年的就醫(yī)費(fèi)用元,而年的就醫(yī)費(fèi)用占總收人所以2019年的家庭總收人為而儲(chǔ)畜費(fèi)用占總收人所以儲(chǔ)畜費(fèi)用:故選:A【點(diǎn)睛】本題主要考查統(tǒng)計(jì)中的折線圖和條形圖的應(yīng)用,還考查了建模解模的能力,屬于基礎(chǔ)題.5、C【解析】
分兩類(lèi)進(jìn)行討論:物理和歷史只選一門(mén);物理和歷史都選,分別求出兩種情況對(duì)應(yīng)的組合數(shù),即可求出結(jié)果.【詳解】若一名學(xué)生只選物理和歷史中的一門(mén),則有種組合;若一名學(xué)生物理和歷史都選,則有種組合;因此共有種組合.故選C【點(diǎn)睛】本題主要考查兩個(gè)計(jì)數(shù)原理,熟記其計(jì)數(shù)原理的概念,即可求出結(jié)果,屬于??碱}型.6、A【解析】
根據(jù)對(duì)數(shù)性質(zhì)可知,再根據(jù)集合的交集運(yùn)算即可求解.【詳解】∵,集合,∴由交集運(yùn)算可得.故選:A.【點(diǎn)睛】本題考查由對(duì)數(shù)的性質(zhì)比較大小,集合交集的簡(jiǎn)單運(yùn)算,屬于基礎(chǔ)題.7、C【解析】
畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【詳解】如圖所示:畫(huà)出可行域和目標(biāo)函數(shù),z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據(jù)圖像知,當(dāng)x+y=2時(shí),且x∈-13,1時(shí),故選:C.【點(diǎn)睛】本題考查了線性規(guī)劃問(wèn)題,畫(huà)出圖像是解題的關(guān)鍵.8、D【解析】試題分析:由,得,則,故選D.考點(diǎn):1、復(fù)數(shù)的運(yùn)算;2、復(fù)數(shù)的模.9、D【解析】
通過(guò)分析函數(shù)與的圖象,得到兩函數(shù)必須有相同的零點(diǎn),解方程組即得解.【詳解】如圖所示,函數(shù)與的圖象,因?yàn)闀r(shí),恒成立,于是兩函數(shù)必須有相同的零點(diǎn),所以,解得.故選:D【點(diǎn)睛】本題主要考查函數(shù)的圖象的綜合應(yīng)用和函數(shù)的零點(diǎn)問(wèn)題,考查不等式的恒成立問(wèn)題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.10、B【解析】
根據(jù)求出再根據(jù)也在直線上,求出b的值,即得解.【詳解】因?yàn)?,所以所以,又也在直線上,所以,解得所以.故選:B【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的幾何意義,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.11、C【解析】
設(shè)M,N,P分別為和的中點(diǎn),得出的夾角為MN和NP夾角或其補(bǔ)角,根據(jù)中位線定理,結(jié)合余弦定理求出和的余弦值再求其正弦值即可.【詳解】根據(jù)題意畫(huà)出圖形:設(shè)M,N,P分別為和的中點(diǎn),則的夾角為MN和NP夾角或其補(bǔ)角可知,.作BC中點(diǎn)Q,則為直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故選:C【點(diǎn)睛】此題考查異面直線夾角,關(guān)鍵點(diǎn)通過(guò)平移將異面直線夾角轉(zhuǎn)化為同一平面內(nèi)的夾角,屬于較易題目.12、B【解析】
分別作出各個(gè)選項(xiàng)中的函數(shù)的圖象,根據(jù)圖象觀察可得結(jié)果.【詳解】對(duì)于,圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯(cuò)誤;對(duì)于,的圖象如下圖所示:則在定義域上單調(diào)遞增,且值域?yàn)?,正確;對(duì)于,的圖象如下圖所示:則函數(shù)單調(diào)遞增,但值域?yàn)?,錯(cuò)誤;對(duì)于,的圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯(cuò)誤.故選:.【點(diǎn)睛】本題考查函數(shù)單調(diào)性和值域的判斷問(wèn)題,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
在不等式兩邊同時(shí)取對(duì)數(shù),然后構(gòu)造函數(shù)f(x)=,求函數(shù)的導(dǎo)數(shù),研究函數(shù)的單調(diào)性即可得到結(jié)論.【詳解】不等式兩邊同時(shí)取對(duì)數(shù)得,即x2lnx1<x1lnx2,又即成立,設(shè)f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),則函數(shù)f(x)在(0,m)上為增函數(shù),函數(shù)的導(dǎo)數(shù),由f′(x)>0得1﹣lnx>0得lnx<1,得0<x<e,即函數(shù)f(x)的最大增區(qū)間為(0,e),則m的最大值為e故答案為:e【點(diǎn)睛】本題考查函數(shù)單調(diào)性與導(dǎo)數(shù)之間的應(yīng)用,根據(jù)條件利用取對(duì)數(shù)得到不等式,從而可構(gòu)造新函數(shù),是解決本題的關(guān)鍵14、【解析】
求出向量的坐標(biāo),然后利用向量數(shù)量積的坐標(biāo)運(yùn)算可計(jì)算出結(jié)果.【詳解】,,,因此,.故答案為:.【點(diǎn)睛】本題考查平面向量數(shù)量積的坐標(biāo)運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解析】
求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義令,即可求出切線斜率.【詳解】,,,即曲線在處的切線的斜率.故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)的運(yùn)算法則以及基本初等函數(shù)的導(dǎo)數(shù),屬于基礎(chǔ)題.16、【解析】
由題意畫(huà)出圖形,補(bǔ)形為長(zhǎng)方體,求其對(duì)角線長(zhǎng),可得四面體外接球的半徑,則表面積可求.【詳解】解:如圖,在四面體中,底面,,,可得,補(bǔ)形為長(zhǎng)方體,則過(guò)一個(gè)頂點(diǎn)的三條棱長(zhǎng)分別為1,1,,則長(zhǎng)方體的對(duì)角線長(zhǎng)為,則三棱錐的外接球的半徑為1.其表面積為.故答案為:.【點(diǎn)睛】本題考查多面體外接球表面積的求法,補(bǔ)形是關(guān)鍵,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】
(1)利用正弦定理和余弦定理化簡(jiǎn),根據(jù)勾股定理逆定理求得.(2)設(shè),由此求得的表達(dá)式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè),,,由,根據(jù)正弦定理和余弦定理得.化簡(jiǎn)整理得.由勾股定理逆定理得.(2)設(shè),,由(1)的結(jié)論知.在中,,由,所以.在中,,由,所以.所以,由,所以當(dāng),即時(shí),取得最大值,且最大值為.【點(diǎn)睛】本小題考查正弦定理,余弦定理,勾股定理,解三角形,三角函數(shù)性質(zhì)及其三角恒等變換等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,化歸與轉(zhuǎn)換思想,應(yīng)用意識(shí).18、(1);(2)證明見(jiàn)解析.【解析】
(1)根據(jù)題意,在上單調(diào)遞減,求導(dǎo)得,分類(lèi)討論的單調(diào)性,結(jié)合題意,得出的解析式;(2)由為方程的兩個(gè)實(shí)根,得出,,兩式相減,分別算出和,利用換元法令和構(gòu)造函數(shù),根據(jù)導(dǎo)數(shù)研究單調(diào)性,求出,即可證出結(jié)論.【詳解】(1)根據(jù)題意,對(duì)任意兩個(gè)不等的正實(shí)數(shù),都有恒成立.則在上單調(diào)遞減,因?yàn)?,?dāng)時(shí),在內(nèi)單調(diào)遞減.,當(dāng)時(shí),由,有,此時(shí),當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增,綜上,,所以.(2)由為方程的兩個(gè)實(shí)根,得,兩式相減,可得,因此,令,由,得,則,構(gòu)造函數(shù).則,所以函數(shù)在上單調(diào)遞增,故,即,可知,故,命題得證.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性求函數(shù)的解析式、以及利用構(gòu)造函數(shù)法證明不等式,考查轉(zhuǎn)化思想、解題分析能力和計(jì)算能力.19、【解析】
由,化簡(jiǎn)得,由,所以直線的直角坐標(biāo)方程為,因?yàn)榍€的參數(shù)方程為,整理得,直線的方程與曲線的方程聯(lián)立,,整理得,設(shè),則,根據(jù)弦長(zhǎng)公式求解即可.【詳解】由,化簡(jiǎn)得,又因?yàn)?,所以直線的直角坐標(biāo)方程為,因?yàn)榍€的參數(shù)方程為,消去,整理得,將直線的方程與曲線的方程聯(lián)立,,消去,整理得,設(shè),則,所以,將,代入上式,整理得.【點(diǎn)睛】本題考查參數(shù)方程,極坐標(biāo)方程的應(yīng)用,結(jié)合弦長(zhǎng)公式的運(yùn)用,屬于中檔題.20、(1)見(jiàn)解析(2)【解析】
(1)分類(lèi)討論的值,利用導(dǎo)數(shù)證明單調(diào)性即可;(2)利用導(dǎo)數(shù)分別得出,,時(shí),的最小值,即可得出實(shí)數(shù)的取值范圍.【詳解】(1),.當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞增;當(dāng)即時(shí),時(shí),,在上單調(diào)遞減;時(shí),,在上單調(diào)遞增;當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞減;(2)當(dāng)時(shí),因?yàn)樵谏蠁握{(diào)遞增,所以的最小值為,所以當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增所以的最小值為.因?yàn)?,所以?所以,所以.當(dāng)時(shí),在上單調(diào)遞減所以的最小值為因?yàn)椋?,所以,綜上,.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究函數(shù)的存在性問(wèn)題,屬于中檔題.21、(1)(2)【解析】
(1)利用余弦定理可求,從而得到的值.(2)利用誘導(dǎo)公式和正弦定理化簡(jiǎn)題設(shè)中的邊角關(guān)系可得,得到值后利用面積公式可求.【詳解】(1)由,得.所以由余弦定理,得.又因?yàn)?,所?(2)由,得.由正弦定理,得,因?yàn)?,所?又因,所以.所以的面積.【點(diǎn)睛】在解三角形中,如果題設(shè)條件是關(guān)于邊的二次形式,我們可以利用余弦定理化簡(jiǎn)該條件,如果題設(shè)條件是關(guān)于邊的齊次式或是關(guān)于內(nèi)角正弦的齊次式,那么我們可以利用正弦定理化簡(jiǎn)該條件,如果題設(shè)條件是邊和角的混合關(guān)系式,那么我們也可把這種關(guān)系式轉(zhuǎn)化為角的關(guān)系式或邊的關(guān)系式.22、(1)當(dāng)時(shí),無(wú)極值;當(dāng)時(shí),極小值為;(2).【解析】
(1)求導(dǎo),對(duì)參數(shù)進(jìn)行分類(lèi)討論,即可容易求得函數(shù)的極值;(2)構(gòu)造函數(shù),兩次求導(dǎo),根據(jù)函數(shù)單調(diào)性,由恒成立問(wèn)題求參數(shù)范圍即可.【詳解】(1)依題
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 綠色建筑砌體抹灰施工合同
- 環(huán)保設(shè)施防腐施工協(xié)議
- 2024石子購(gòu)銷(xiāo)合同樣本:質(zhì)量標(biāo)準(zhǔn)與交付期限
- 2024版標(biāo)準(zhǔn)借款協(xié)議:正式版安全可靠3篇
- 2024版專(zhuān)業(yè)養(yǎng)老合同書(shū)定制樣本一
- 2024年高速公路廣告投放代理合同
- 2024私人車(chē)輛雇傭合同范文
- 2024美團(tuán)商家合同電子版電子檔案管理規(guī)范3篇
- 二零二五年度爆破拆除工程爆破拆除施工安全管理合同3篇
- 二零二五年出租車(chē)車(chē)輛安全檢測(cè)服務(wù)合同2篇
- 小學(xué)數(shù)學(xué)聽(tīng)課記錄 精選(范文20篇)
- 2022年新疆青少年出版社有限公司招聘筆試題庫(kù)及答案解析
- 《動(dòng)物生理學(xué)》課程思政優(yōu)秀案例
- 高分子材料完整版課件
- 住宅工程公共區(qū)域精裝修施工組織設(shè)計(jì)(217頁(yè))
- 冷卻塔技術(shù)要求及質(zhì)量標(biāo)準(zhǔn)介紹
- 光伏電站設(shè)備監(jiān)造與性能驗(yàn)收
- 10kV架空線路施工方案
- 2018江蘇蘇州中考英語(yǔ)真題解析
- 10KV戶外封閉型噴射式熔斷器技術(shù)規(guī)范書(shū)
- 奇瑞汽車(chē)4S店各類(lèi)表格模板
評(píng)論
0/150
提交評(píng)論