版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023屆黑龍江省虎林市高級(jí)中學(xué)高三二診數(shù)學(xué)試題試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.觀察下列各式:,,,,,,,,根據(jù)以上規(guī)律,則()A. B. C. D.2.已知,若方程有唯一解,則實(shí)數(shù)的取值范圍是()A. B.C. D.3.已知Sn為等比數(shù)列{an}的前n項(xiàng)和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣854.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}5.設(shè)是虛數(shù)單位,若復(fù)數(shù),則()A. B. C. D.6.已知函數(shù),若,則a的取值范圍為()A. B. C. D.7.函數(shù)的圖象可能為()A. B.C. D.8.已知四棱錐中,平面,底面是邊長(zhǎng)為2的正方形,,為的中點(diǎn),則異面直線與所成角的余弦值為()A. B. C. D.9.已知復(fù)數(shù)滿足,則=()A. B.C. D.10.已知向量,,且與的夾角為,則x=()A.-2 B.2 C.1 D.-111.設(shè)正項(xiàng)等差數(shù)列的前項(xiàng)和為,且滿足,則的最小值為A.8 B.16 C.24 D.3612.已知滿足,,,則在上的投影為()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.假設(shè)10公里長(zhǎng)跑,甲跑出優(yōu)秀的概率為,乙跑出優(yōu)秀的概率為,丙跑出優(yōu)秀的概率為,則甲、乙、丙三人同時(shí)參加10公里長(zhǎng)跑,剛好有2人跑出優(yōu)秀的概率為________.14.拋物線的焦點(diǎn)坐標(biāo)為______.15.已知,記,則的展開式中各項(xiàng)系數(shù)和為__________.16.?dāng)?shù)列滿足,則,_____.若存在n∈N*使得成立,則實(shí)數(shù)λ的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱臺(tái)中,側(cè)面與側(cè)面是全等的梯形,若,且.(Ⅰ)若,,證明:∥平面;(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.18.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點(diǎn)在直線上.(Ⅰ)求的極坐標(biāo)方程和曲線的參數(shù)方程;(Ⅱ)求曲線的內(nèi)接矩形的周長(zhǎng)的最大值.19.(12分)如圖,已知平面與直線均垂直于所在平面,且.(1)求證:平面;(2)若,求與平面所成角的正弦值.20.(12分)三棱柱中,平面平面,,點(diǎn)為棱的中點(diǎn),點(diǎn)為線段上的動(dòng)點(diǎn).(1)求證:;(2)若直線與平面所成角為,求二面角的正切值.21.(12分)已知等差數(shù)列的前n項(xiàng)和為,,公差,、、成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列,的通項(xiàng)公式;(2)已知,求數(shù)列的前n項(xiàng)和.22.(10分)在中,內(nèi)角所對(duì)的邊分別為,已知,且.(I)求角的大?。唬á颍┤?,求面積的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
每個(gè)式子的值依次構(gòu)成一個(gè)數(shù)列,然后歸納出數(shù)列的遞推關(guān)系后再計(jì)算.【詳解】以及數(shù)列的應(yīng)用根據(jù)題設(shè)條件,設(shè)數(shù)字,,,,,,,構(gòu)成一個(gè)數(shù)列,可得數(shù)列滿足,則,,.故選:B.【點(diǎn)睛】本題主要考查歸納推理,解題關(guān)鍵是通過數(shù)列的項(xiàng)歸納出遞推關(guān)系,從而可確定數(shù)列的一些項(xiàng).2、B【解析】
求出的表達(dá)式,畫出函數(shù)圖象,結(jié)合圖象以及二次方程實(shí)根的分布,求出的范圍即可.【詳解】解:令,則,則,故,如圖示:由,得,函數(shù)恒過,,由,,可得,,,若方程有唯一解,則或,即或;當(dāng)即圖象相切時(shí),根據(jù),,解得舍去),則的范圍是,故選:.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)問題,考查函數(shù)方程的轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.3、D【解析】
由等比數(shù)列的性質(zhì)求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項(xiàng)和公比,根據(jù)等比數(shù)列的前n項(xiàng)和公式解答即可.【詳解】設(shè)等比數(shù)列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【點(diǎn)睛】本題主要考查等比數(shù)列的前n項(xiàng)和,根據(jù)等比數(shù)列建立條件關(guān)系求出公比是解決本題的關(guān)鍵,屬于基礎(chǔ)題.4、C【解析】
根據(jù)集合的并集、補(bǔ)集的概念,可得結(jié)果.【詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【點(diǎn)睛】本題考查的是集合并集,補(bǔ)集的概念,屬基礎(chǔ)題.5、A【解析】
結(jié)合復(fù)數(shù)的除法運(yùn)算和模長(zhǎng)公式求解即可【詳解】∵復(fù)數(shù),∴,,則,故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法、模長(zhǎng)、平方運(yùn)算,屬于基礎(chǔ)題6、C【解析】
求出函數(shù)定義域,在定義域內(nèi)確定函數(shù)的單調(diào)性,利用單調(diào)性解不等式.【詳解】由得,在時(shí),是增函數(shù),是增函數(shù),是增函數(shù),∴是增函數(shù),∴由得,解得.故選:C.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性,考查解函數(shù)不等式,解題關(guān)鍵是確定函數(shù)的單調(diào)性,解題時(shí)可先確定函數(shù)定義域,在定義域內(nèi)求解.7、C【解析】
先根據(jù)是奇函數(shù),排除A,B,再取特殊值驗(yàn)證求解.【詳解】因?yàn)?,所以是奇函?shù),故排除A,B,又,故選:C【點(diǎn)睛】本題主要考查函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎(chǔ)題.8、B【解析】
由題意建立空間直角坐標(biāo)系,表示出各點(diǎn)坐標(biāo)后,利用即可得解.【詳解】平面,底面是邊長(zhǎng)為2的正方形,如圖建立空間直角坐標(biāo)系,由題意:,,,,,為的中點(diǎn),.,,,異面直線與所成角的余弦值為即為.故選:B.【點(diǎn)睛】本題考查了空間向量的應(yīng)用,考查了空間想象能力,屬于基礎(chǔ)題.9、B【解析】
利用復(fù)數(shù)的代數(shù)運(yùn)算法則化簡(jiǎn)即可得到結(jié)論.【詳解】由,得,所以,.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.10、B【解析】
由題意,代入解方程即可得解.【詳解】由題意,所以,且,解得.故選:B.【點(diǎn)睛】本題考查了利用向量的數(shù)量積求向量的夾角,屬于基礎(chǔ)題.11、B【解析】
方法一:由題意得,根據(jù)等差數(shù)列的性質(zhì),得成等差數(shù)列,設(shè),則,,則,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,從而的最小值為16,故選B.方法二:設(shè)正項(xiàng)等差數(shù)列的公差為d,由等差數(shù)列的前項(xiàng)和公式及,化簡(jiǎn)可得,即,則,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,從而的最小值為16,故選B.12、A【解析】
根據(jù)向量投影的定義,即可求解.【詳解】在上的投影為.故選:A【點(diǎn)睛】本題考查向量的投影,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
分跑出優(yōu)秀的人為:甲、乙和甲、丙和乙、丙三種情況分別計(jì)算再求和即可.【詳解】剛好有2人跑出優(yōu)秀有三種情況:其一是只有甲、乙兩人跑出優(yōu)秀的概率為;其二是只有甲、丙兩人跑出優(yōu)秀的概率為;其三是只有乙、丙兩人跑出優(yōu)秀的概率為,三種情況相加得.即剛好有2人跑出優(yōu)秀的概率為.故答案為:【點(diǎn)睛】本題主要考查了分類方法求解事件概率的問題,屬于基礎(chǔ)題.14、【解析】
變換得到,計(jì)算焦點(diǎn)得到答案.【詳解】拋物線的標(biāo)準(zhǔn)方程為,,所以焦點(diǎn)坐標(biāo)為.故答案為:【點(diǎn)睛】本題考查了拋物線的焦點(diǎn)坐標(biāo),屬于簡(jiǎn)單題.15、【解析】
根據(jù)定積分的計(jì)算,得到,令,求得,即可得到答案.【詳解】根據(jù)定積分的計(jì)算,可得,令,則,即的展開式中各項(xiàng)系數(shù)和為.【點(diǎn)睛】本題主要考查了定積分的應(yīng)用,以及二項(xiàng)式定理的應(yīng)用,其中解答中根據(jù)定積分的計(jì)算和二項(xiàng)式定理求得的表示是解答本題的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.16、【解析】
利用“退一作差法”求得數(shù)列的通項(xiàng)公式,將不等式分離常數(shù),利用商比較法求得的最小值,由此求得的取值范圍,進(jìn)而求得的最小值.【詳解】當(dāng)時(shí)兩式相減得所以當(dāng)時(shí),滿足上式綜上所述存在使得成立的充要條件為存在使得,設(shè),所以,即,所以單調(diào)遞增,的最小項(xiàng),即有的最小值為.故答案為:(1).(2).【點(diǎn)睛】本小題主要考查根據(jù)遞推關(guān)系式求數(shù)列的通項(xiàng)公式,考查數(shù)列單調(diào)性的判斷方法,考查不等式成立的存在性問題的求解策略,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接,由比例可得∥,進(jìn)而得線面平行;(Ⅱ)過點(diǎn)作的垂線,建立空間直角坐標(biāo)系,不妨設(shè),則求得平面的法向量為,設(shè)平面的法向量為,由求二面角余弦即可.試題解析:(Ⅰ)證明:連接,梯形,,易知:;又,則∥;平面,平面,可得:∥平面;(Ⅱ)側(cè)面是梯形,,,,則為二面角的平面角,;均為正三角形,在平面內(nèi),過點(diǎn)作的垂線,如圖建立空間直角坐標(biāo)系,不妨設(shè),則,故點(diǎn),;設(shè)平面的法向量為,則有:;設(shè)平面的法向量為,則有:;,故平面與平面所成的銳二面角的余弦值為.18、(Ⅰ)曲線的參數(shù)方程為:(為參數(shù));的極坐標(biāo)方程為;(Ⅱ)16.【解析】
(
I
)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程、極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換;(
II
)利用三角函數(shù)關(guān)系式的恒等變換和正弦型函數(shù)的性質(zhì)的應(yīng)用,即可求出結(jié)果.【詳解】(Ⅰ)由題意:曲線的直角坐標(biāo)方程為:,所以曲線的參數(shù)方程為(為參數(shù)),因?yàn)橹本€的直角坐標(biāo)方程為:,又因曲線的左焦點(diǎn)為,將其代入中,得到,所以的極坐標(biāo)方程為.(Ⅱ)設(shè)橢圓的內(nèi)接矩形的頂點(diǎn)為,,,,所以橢圓的內(nèi)接矩形的周長(zhǎng)為:,所以當(dāng)時(shí),即時(shí),橢圓的內(nèi)接矩形的周長(zhǎng)取得最大值16.【點(diǎn)睛】本題考查了曲線的參數(shù)方程,極坐標(biāo)方程與普通方程間的互化,三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,極徑的應(yīng)用,考查學(xué)生的求解運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.19、(1)見解析;(2)【解析】
(Ⅰ)證明:過點(diǎn)作于點(diǎn),∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴點(diǎn)是的中點(diǎn),連結(jié),則∴平面∴∥,∴四邊形是矩形設(shè),得:,又∵,∴,從而,過作于點(diǎn),則∴是與平面所成角∴,∴與平面所成角的正弦值為考點(diǎn):面面垂直的性質(zhì)定理;線面平行的判定定理;線面垂直的性質(zhì)定理;直線與平面所成的角.點(diǎn)評(píng):本題主要考查了線面平行的證明和直線與平面所成的角,屬立體幾何中的??碱}型,較難.本題也可以用向量法來做:用向量法解題的關(guān)鍵是;首先正確的建立空間直角坐標(biāo)系,正確求解平面的一個(gè)法向量.注意計(jì)算要仔細(xì)、認(rèn)真.≌20、(1)見解析;(2)【解析】
(1)可證面,從而可得.(2)可證點(diǎn)為線段的三等分點(diǎn),再過作于,過作,垂足為,則為二面角的平面角,利用解直角三角形的方法可求.也可以建立如圖所示的空間直角坐標(biāo)系,利用兩個(gè)平面的法向量來計(jì)算二面角的平面角的余弦值,最后利用同角三角函數(shù)的基本關(guān)系式可求.【詳解】證明:(1)因?yàn)闉橹悬c(diǎn),所以.因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,而平面,故,又因?yàn)?,所以,則,又,故面,又面,所以.(2)由(1)可得:面在面內(nèi)的射影為,則為直線與平面所成的角,即.因?yàn)?,所以,所以,所以,即點(diǎn)為線段的三等分點(diǎn).解法一:過作于,則平面,所以,過作,垂足為,則為二面角的平面角,因?yàn)?,,,則在中,有,所以二面角的平面角的正切值為.解法二:以點(diǎn)為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,設(shè)點(diǎn),由得:,即,,,點(diǎn),平面的一個(gè)法向量,又,,設(shè)平面的一個(gè)法向量為,則,令,則平面的一個(gè)法向量為.設(shè)二面角的平面角為,則,即,所以二面角的正切值為.【點(diǎn)睛】線線垂直的判定可由線面垂直得到,也可以由兩條線所成的角為得到,而線面垂直又可以由面面垂直得到,解題中注意三種垂直關(guān)系的轉(zhuǎn)化.空間中的角的計(jì)算,可以建立空間直角坐標(biāo)系把角的計(jì)算歸結(jié)為向量的夾角的計(jì)算,也可以構(gòu)建空間角,把角的計(jì)算歸結(jié)平面圖形中的角的計(jì)算.21、(1),();(2).【解析】
(1)根據(jù)是等差數(shù)列,,、、成等比數(shù)列,列兩個(gè)方程即可求出,從而求得,代入化簡(jiǎn)即可求得;(2)化簡(jiǎn)后求和為裂項(xiàng)相消求和,分組求和即可,注意討論公比是否為1.【詳解】(1)由題意知,,,由得,解得.又,得,解得或(舍
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度寵物養(yǎng)護(hù)服務(wù)中介擔(dān)保服務(wù)條款3篇
- 2024-2030年中國垃圾發(fā)電行業(yè)發(fā)展困境與十三五投資建議報(bào)告
- 2024-2030年中國衛(wèi)浴五金行業(yè)市場(chǎng)競(jìng)爭(zhēng)戰(zhàn)略及發(fā)展?jié)摿ρ芯繄?bào)告
- 2024年物業(yè)管理合作協(xié)議模板6篇
- 2024年機(jī)器操作安全合同3篇
- 滿洲里俄語職業(yè)學(xué)院《進(jìn)出口業(yè)務(wù)實(shí)操二》2023-2024學(xué)年第一學(xué)期期末試卷
- 漯河醫(yī)學(xué)高等??茖W(xué)?!毒频旯芾硇畔⒒浖?shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024套房智能家居系統(tǒng)設(shè)計(jì)與安裝服務(wù)合同
- 2025微博微信廣告發(fā)布合同書
- 單位人力資源管理制度品讀選集
- 木門安裝說明指導(dǎo)書指導(dǎo)手冊(cè)圖文介紹(附圖)
- 實(shí)習(xí)老師歡送會(huì)課件
- 部編 二年級(jí)語文上冊(cè) 第七單元【教材解讀】
- 《Stata統(tǒng)計(jì)分析與應(yīng)用》課程教學(xué)大綱
- 09阜新地價(jià)修正體系
- 中小學(xué)教師信息技術(shù)應(yīng)用能力發(fā)展測(cè)評(píng):30項(xiàng)微能力
- 旅游地理學(xué)發(fā)展簡(jiǎn)史
- 常見鵝病診斷和防治
- 鉆孔灌注樁施工危險(xiǎn)源識(shí)別及防控措施
- 藍(lán)色企業(yè)發(fā)展歷程時(shí)間軸PPT模板課件
- 水電站課程設(shè)計(jì) 40
評(píng)論
0/150
提交評(píng)論