山東青島平度第三中學2024屆高二上數(shù)學期末達標檢測試題含解析_第1頁
山東青島平度第三中學2024屆高二上數(shù)學期末達標檢測試題含解析_第2頁
山東青島平度第三中學2024屆高二上數(shù)學期末達標檢測試題含解析_第3頁
山東青島平度第三中學2024屆高二上數(shù)學期末達標檢測試題含解析_第4頁
山東青島平度第三中學2024屆高二上數(shù)學期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東青島平度第三中學2024屆高二上數(shù)學期末達標檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線,若直線與垂直,則的傾斜角為()A. B.C. D.2.將點的極坐標化成直角坐標是(

)A. B.C. D.3.已知拋物線的焦點為F,點P為該拋物線上的動點,若,則當最大時,()A. B.1C. D.24.已知拋物線C:,則過拋物線C的焦點,弦長為整數(shù)且不超過2022的直線的條數(shù)是()A.4037 B.4044C.2019 D.20225.的展開式中的系數(shù)是()A.1792 B.C.448 D.6.已知數(shù)據(jù)的平均數(shù)是,方差是4,則數(shù)據(jù)的方差是()A.3.4 B.3.6C.3.8 D.47.已知拋物線的焦點為,為坐標原點,點在拋物線上,且,點是拋物線的準線上的一動點,則的最小值為().A. B.C. D.8.如圖,在正方體中,是側面內一動點,若到直線與直線的距離相等,則動點的軌跡所在的曲線是()A.直線 B.圓C.雙曲線 D.拋物線9.如果,那么下列不等式成立的是()A. B.C. D.10.定義“等方差數(shù)列”:如果一個數(shù)列從第二項起,每一項的平方與它的前一項的平方的差都等于同一個常數(shù),那么這個數(shù)列就叫作等方差數(shù)列,這個常數(shù)叫作該數(shù)列的方公差.設是由正數(shù)組成的等方差數(shù)列,且方公差為4,,則數(shù)列的前24項和為()A. B.3C. D.611.已知直線m經過,兩點,則直線m的斜率為()A.-2 B.C. D.212.已知,是雙曲線C:(,)的兩個焦點,過點與x軸垂直的直線與雙曲線C交于A、B兩點,若是等腰直角三角形,則雙曲線C的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.歷史上第一個研究圓錐曲線的是梅納庫莫斯(公元前375年—325年),大約100年后,阿波羅尼奧更詳盡、系統(tǒng)地研究了圓錐曲線,并且他還進一步研究了這些圓錐曲線的光學性質,比如:從拋物線的焦點發(fā)出的光線或聲波在經過拋物線反射后,反射光線平行于拋物線的對稱軸:反之,平行于拋物線對稱軸的光線,經拋物線反射后,反射光線經過拋物線的焦點.已知拋物線,經過點一束平行于C對稱軸的光線,經C上點P反射后交C于點Q,則PQ的長度為______.14.拋物線的焦點坐標為__________15.已知是雙曲線的左、右焦點,若為雙曲線上一點,且,則__________.16.已知橢圓的弦AB的中點為M,O為坐標原點,則直線AB的斜率與直線OM的斜率之積等于_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知的展開式中,第4項的系數(shù)與倒數(shù)第4項的系數(shù)之比為.(1)求m的值;(2)求展開式中所有項的系數(shù)和與二項式系數(shù)和.18.(12分)如圖,在直三棱柱中,,E、F分別是、的中點(1)求證:平面;(2)求證:平面19.(12分)在等差數(shù)列中,,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和.20.(12分)已知數(shù)列的前n項和為,且.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前n項和.21.(12分)已知橢圓的左右焦點分別為,,點在橢圓上,與軸垂直,且(1)求橢圓的方程;(2)若點在橢圓上,且,求的面積22.(10分)已知直線l:2mx-y-8m-3=0和圓C:x2+y2-6x+12y+20=0.(1)m∈R時,證明l與C總相交;(2)m取何值時,l被C截得的弦長最短?求此弦長

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由直線與垂直得到的斜率,再利用斜率與傾斜角的關系即可得到答案.【詳解】因為直線與垂直,且,所以,解得,設的傾斜角為,,所以.故選:D2、A【解析】本題考查極坐標與直角坐標互化由點M的極坐標,知極坐標與直角坐標的關系為,所以的直角坐標為即故正確答案為A3、B【解析】根據(jù)拋物線的定義,結合換元法、配方法進行求解即可.【詳解】因為點P為該拋物線上的動點,所以點P的坐標設為,拋物線的焦點為F,所以,拋物線的準線方程為:,因此,令,,當時,即當時,有最大值,最大值為1,此時.故選:B4、A【解析】根據(jù)已知條件,結合拋物線的性質,先求出過焦點的最短弦長,再結合拋物線的對稱性,即可求解【詳解】∵拋物線C:,即,由拋物線的性質可得,過拋物線焦點中,長度最短的為垂直于y軸的那條弦,則過拋物線C的焦點,長度最短的弦的長為,由拋物線的對稱性可得,弦長在5到2022之間的有共有條,故弦長為整數(shù)且不超過2022的直線的條數(shù)是故選:A5、D【解析】根據(jù)二項式展開式的通項公式計算出正確答案.【詳解】的展開式中,含的項為.所以的系數(shù)是.故選:D6、B【解析】利用方差的定義即可解得.【詳解】由方差的定義,,則,所以數(shù)據(jù)的方差為:.故選:B7、A【解析】求出點坐標,做出關于準線的對稱點,利用連點之間相對最短得出為的最小值【詳解】解:拋物線的準線方程為,,到準線的距離為2,故點縱坐標為1,把代入拋物線方程可得不妨設在第一象限,則,點關于準線的對稱點為,連接,則,于是故的最小值為故選:A【點睛】本題考查了拋物線的簡單幾何性質,屬于基礎題8、D【解析】由到直線的距離等于到點的距離可得到直線的距離等于到點的距離,然后可得答案.【詳解】因為到直線的距離等于到點的距離,所以到直線的距離等于到點的距離,所以動點的軌跡是以為焦點、為準線的拋物線故選:D9、D【解析】利用不等式的性質分析判斷每個選項.【詳解】由不等式的性質可知,因為,所以,,故A錯誤,D正確;由,可得,,故B,C錯誤.故選:D10、C【解析】根據(jù)等方差數(shù)列的定義,結合等差數(shù)列的通項公式,運用裂項相消法進行求解即可.【詳解】因為是方公差為4的等方差數(shù)列,所以,,∴,∴,∴,故選:C11、A【解析】根據(jù)斜率公式求得正確答案.【詳解】直線的斜率為:.故選:A12、B【解析】根據(jù)等腰直角三角形的性質,結合雙曲線的離心率公式進行求解即可.【詳解】由題意不妨設,,當時,由,不妨設,因為是等腰直角三角形,所以有,或舍去,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、####【解析】根據(jù)題意,求得點以及拋物線焦點的坐標,即可求得所在直線方程,聯(lián)立其與拋物線方程,求得點的坐標,即可求得.【詳解】因為經過點一束平行于C對稱軸的光線交拋物線于點,故對,令,則可得,也即的坐標為,又拋物線的焦點的坐標為,故可得直線方程為,聯(lián)立拋物線方程可得:,,解得或,將代入,可得,即的坐標為,則.故答案為:.14、【解析】化成標準形式,結合焦點定義即可求解.【詳解】由,得,故拋物線的焦點坐標為故答案為:15、17【解析】根據(jù)雙曲線的定義求解【詳解】由雙曲線方程知,,,又.,所以(1舍去)故答案為:1716、【解析】根據(jù)點是弦的中點,為坐標原點,利用點差法求解.【詳解】設,且,則,(1),(2)得:,,.又,,.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)所有項的系數(shù)和為,二項式系數(shù)和為【解析】(1)寫出展開式的通項,求出其第4項系數(shù)和倒數(shù)第4項系數(shù),列出方程即可求出m的值;(2)令x=1即可求所有展開項系數(shù)之和,二項式系數(shù)之和為2m.【小問1詳解】展開式的通項為:,∴展開式中第4項的系數(shù)為,倒數(shù)第4項的系數(shù)為,∴,即.【小問2詳解】令可得展開式中所有項的系數(shù)和為,展開式中所有項的二項式系數(shù)和為.18、(1)證明見解析;(2)證明見解析.【解析】(1)連接,交于點M,連接ME,則M為中點.根據(jù)三角形的中位線定理和平行四邊形的判斷和性質可證得,再由線面平行的判定定理可得證;(2)由線面垂直的性質和判定可得證.【詳解】證明:(1)連接,交于點M,連接ME,則M為中點因為E、F分別是與的中點,所以,則,從而為平行四邊形,則又因為平面平面,所以平面(2)由平面,因為平面,所以而,M為的中點,所以因為,所以平面,由(1)有,故平面19、(1)(2)【解析】(1)根據(jù)已知條件求得,由此求得數(shù)列的通項公式.(2)令,分和去掉絕對值,根據(jù)等差數(shù)列的求和公式求得.【小問1詳解】設等差數(shù)列的公差為,∵,,所以,所以,則.【小問2詳解】令,解得,當時,,,當時,.20、(1)(2)【解析】(1)根據(jù)與的關系,分和兩種情況,求出,再判斷是否合并;(2)利用錯位相減法求出數(shù)列的前n項和.【小問1詳解】,當時,,當時,,也滿足上式,數(shù)列的通項公式為:.【小問2詳解】由(1)可得,①②①②得,21、(1);(2)【解析】(1)由橢圓的性質求出,進而得出方程;(2)由,結合余弦定理求出,再由面積公式得出三角形的面積.【詳解】解:(1),與軸垂直,,∴∴橢圓的方程為(2)由(1)知,∵,∴∴,∴的面積為【點睛】關鍵點睛:解決問題二的關鍵在于利用余弦定理結合完全平方和公式求出,進而得出面積.22、(1)證明見解析;(2)當時,l被C截得的弦長最短,最短弦長為.【解析】(1)求出直線l的定點,進而判斷定點和圓C的位置關系,最后得到答案;(2)當圓心C到直線l的距離最大時,弦長最短,進而求出m,然后根據(jù)勾股定理求出弦長.【詳解】(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論