版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省德州市夏津第一中學2024屆高二上數(shù)學期末學業(yè)水平測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設村莊外圍所在曲線的方程可用表示,村外一小路所在直線方程可用表示,則從村莊外圍到小路的最短距離為()A. B.C. D.2.若曲線f(x)=x2的一條切線l與直線平行,則l的方程為()A.4x-y-4=0 B.x+4y-5=0C.x-4y+3=0 D.4x+y+4=03.有7名同學參加百米競賽,預賽成績各不相同,取前3名參加決賽,小明同學已經(jīng)知道了自己的成績,為了判斷自己是否能進入決賽,他還需要知道7名同學成績的()A.平均數(shù) B.眾數(shù)C.中位數(shù) D.方差4.已知點是橢圓上的一點,點,則的最小值為A. B.C. D.5.某市統(tǒng)計局網(wǎng)站公布了2017年至2020年該市政府部門網(wǎng)站的每年的兩項訪問量,數(shù)據(jù)如下:年度項目2017年2018年2019年2020年獨立用戶訪問總量(單位:個)2512573924400060989網(wǎng)站總訪問量(單位:次)23435370348194783219288下列表述中錯誤的是()A.2017年至2018年,兩項訪問量都增長幅度較大;B.2018年至2019年,兩項訪問量都有所回落;C.2019年至2020年,兩項訪問量都又有所增長;D.從數(shù)據(jù)可以看出,該市政府部門網(wǎng)站的兩項訪問量都呈逐年增長態(tài)勢6.若曲線表示圓,則m的取值范圍是()A. B.C. D.7.為了了解1200名學生對學校某項教改實驗的意見,打算從中抽取一個容量為40的樣本,采用系統(tǒng)抽樣方法,則分段的間隔為()A.40 B.30C.20 D.128.已知隨機變量服從正態(tài)分布,若,則()A.0.2 B.0.24C.0.28 D.0.329.直線的傾斜角的取值范圍是()A. B.C. D.10.若,則的虛部為()A. B.C. D.11.若圓上恰有2個點到直線的距離為1,則實數(shù)的取值范圍為()A B.C. D.12.已知點在拋物線:上,點為拋物線的焦點,,點P到y(tǒng)軸的距離為4,則拋物線C的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列的前項和為,若,,則數(shù)列的前2021項和為___________.14.以點為圓心,且與直線相切的圓的方程是____________15.函數(shù)在上的最大值為______________16.若實數(shù)x,y滿足約束條件,則的最大值是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項和(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和18.(12分)排一張有6個歌唱節(jié)目和5個舞蹈節(jié)目的演出節(jié)目單.(1)任何兩個舞蹈節(jié)目不相鄰的排法有多少種?(2)歌唱節(jié)目與舞蹈節(jié)目間隔排列的方法有多少種?19.(12分)已知函數(shù),.(1)若,求曲線在點處的切線方程;(2)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍.20.(12分)內角A,B,C的對邊分別為a,b,c,已知(1)求B;(2)若,且是銳角三角形,求c的值21.(12分)設函數(shù)(1)求在處的切線方程;(2)求在上的最大值與最小值22.(10分)已知拋物線與直線相切.(1)求該拋物線的方程;(2)在軸的正半軸上,是否存在某個確定的點M,過該點的動直線與拋物線C交于A,B兩點,使得為定值.如果存在,求出點M的坐標;如果不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出圓心到直線距離,減去半徑即為答案.【詳解】圓心到直線的距離,則從村莊外圍到小路的最短距離為故選:B2、D【解析】設切點為,則切線的斜率為,然后根據(jù)條件可得的值,然后可得答案.【詳解】設切點為,因為,所以切線的斜率為因為曲線f(x)=x2的一條切線l與直線平行,所以,即所以l的方程為,即故選:D3、C【解析】根據(jù)中位數(shù)的性質,結合題設按成績排序7選3,即可知還需明確的成績數(shù)據(jù)信息.【詳解】由題設,7名同學參加百米競賽,要取前3名參加決賽,則成績從高到低排列,確定7名同學成績的中位數(shù),即第3名的成績便可判斷自己是否能進入決賽.故選:C.4、D【解析】設,則,.所以當時,的最小值為.故選D.5、D【解析】根據(jù)表格數(shù)據(jù),結合各選項的描述判斷正誤即可.【詳解】A:2017年至2018年,兩項訪問量分別增長、,顯然增長幅度相較于后兩年是最大的,正確;B:2018年至2019年,兩項訪問量相較于2017年至2018年都有回落,正確;C:2019年至2020年,兩項訪問量分別增長、,正確;D:由B分析知,該市政府部門網(wǎng)站的兩項訪問量在2018年至2019年有回落,而不是逐年增長態(tài)勢,錯誤.故選:D.6、C【解析】按照圓的一般方程滿足的條件求解即可.【詳解】或.故選:C.7、B【解析】根據(jù)系統(tǒng)抽樣的概念,以及抽樣距的求法,可得結果.【詳解】由總數(shù)為1200,樣本容量為40,所以抽樣距為:故選:B【點睛】本題考查系統(tǒng)抽樣的概念,屬基礎題.8、C【解析】依據(jù)正態(tài)曲線的對稱性即可求得【詳解】由隨機變量服從正態(tài)分布,可知正態(tài)曲線的對稱軸為直線由,可得則,故故選:C9、A【解析】由直線方程求得直線斜率的范圍,再由斜率等于傾斜角的正切值可得直線的傾斜角的取值范圍.【詳解】∵直線的斜率,,設直線的傾斜角為,則,解得.故選:A.10、A【解析】根據(jù)復數(shù)的運算化簡,由復數(shù)概念即可求解.【詳解】因為,所以的虛部為,故選:A11、A【解析】求得圓心到直線的距離,根據(jù)題意列出的不等關系式,即可求得的范圍.【詳解】因為圓心到直線的距離,故要滿足題意,只需,解得.故選:A.12、D【解析】由拋物線定義可得,注意開口方向.詳解】設∵點P到y(tǒng)軸的距離是4∴∵,∴.得:.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意求出,代入中,再利用裂項相消即可求出答案.【詳解】由是等差數(shù)列且,可知:,故.,數(shù)列的前2021項和為.故答案為:.14、【解析】根據(jù)直線與圓相切,圓心到直線距離等于半徑,由點到直線的距離公式求出半徑,然后可得.【詳解】圓心到直線的距離,又圓與直線相切,所以,所以圓的方程為.故答案為:15、【解析】對原函數(shù)求導得,令,解得或,且所以原函數(shù)在上的最大值為考點:1.函數(shù)求導;2.利用導函數(shù)求最值16、##【解析】畫出可行域,通過平移基準直線到可行域邊界位置,由此求得的最大值.【詳解】,畫出可行域如下圖所示,由圖可知,平移基準直線到點時,取得最大值為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用與的關系求數(shù)列的通項公式;(2)利用錯位相減法求和即可.【小問1詳解】因為,故當時,,兩式相減得,又由題設可得,從而的通項公式為:;【小問2詳解】因為,,兩式相減得:所以.18、(1)(2)【解析】(1)用插空法,現(xiàn)排唱歌,利用產(chǎn)生的空排跳舞;(2)先排唱歌再排舞蹈.【小問1詳解】解:先排歌唱節(jié)目有種,歌唱節(jié)目之間以及兩端共有7個空位,從中選5個放入舞蹈節(jié)目,共有種方法,所以任何兩個舞蹈節(jié)目不相鄰的排法有種方法.【小問2詳解】解:先排舞蹈節(jié)目有種方法,在舞蹈節(jié)目之間以及兩端共有6個空位,恰好供6個歌唱節(jié)目放入.所以歌唱節(jié)目與舞蹈節(jié)目間隔排列的排法有種方法.19、(1).(2).【解析】分析:(1)由和可由點斜式得切線方程;(2)由函數(shù)在上是減函數(shù),可得在上恒成立,,由二次函數(shù)的性質可得解.詳解:(1)當時,所以,所以曲線在點處的切線方程為.(2)因為函數(shù)在上是減函數(shù),所以在上恒成立.做法一:令,有,得故.實數(shù)的取值范圍為做法二:即在上恒成立,則在上恒成立,令,顯然在上單調遞減,則,得實數(shù)的取值范圍為點睛:導數(shù)問題經(jīng)常會遇見恒成立的問題:(1)根據(jù)參變分離,轉化為不含參數(shù)的函數(shù)的最值問題;(2)若就可討論參數(shù)不同取值下的函數(shù)的單調性和極值以及最值,最終轉化為,若恒成立;(3)若恒成立,可轉化為(需在同一處取得最值).20、(1)或(2)【解析】(1)利用正弦定理邊化角,然后可解;(2)利用余弦定理求出c,然后檢驗可得.【小問1詳解】,即或【小問2詳解】因為是銳角三角形,所以因為所以由余弦定理得:即,解得或若,則,所以,不滿足題意;若,因為,且,所以,此時是銳角三角形.所以.21、(1)(2),【解析】(1)對函數(shù)求導,然后求出,,運用點斜式即可求出切線方程;(2)利用導數(shù)研究出函數(shù)在區(qū)間的單調性,即可求出函數(shù)在區(qū)間上的最大值與最小值【小問1詳解】,,,所以在點處的切線方程為,即.【小問2詳解】,因為,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 超市經(jīng)營合同三篇
- 醫(yī)用電子儀器設備相關行業(yè)投資方案范本
- 市場定位與品牌戰(zhàn)略計劃
- 新型地熱用熱交換器相關項目投資計劃書
- UV激光切割機相關行業(yè)投資規(guī)劃報告范本
- 大孔燒結空心磚相關行業(yè)投資規(guī)劃報告
- 結合地方文化的藝術課程設計計劃
- 汽車廠生產(chǎn)線升級改造工程合同三篇
- 葡萄運輸合同三篇
- 設計優(yōu)化培訓
- 兒童流感診療及預防指南(2024醫(yī)生版)
- 【課件】第21課《小圣施威降大圣》課件2024-2025學年統(tǒng)編版語文七年級上冊
- 工程計價學-001-國開機考復習資料
- 《孟母三遷》課本劇劇本:環(huán)境對成長的重要性(6篇)
- 《富馬酸盧帕他定口崩片關鍵質量屬性與標準研究》
- 走近非遺 課件 2024-2025學年湘美版(2024)初中美術七年級上冊
- 新生兒壞死性小腸結腸炎臨床診療指南解讀 課件
- 網(wǎng)絡數(shù)據(jù)安全管理條例
- 2024版2024年【人教版】二年級上冊《道德與法治》全冊教案
- 山東省泰安市2024屆高三上學期期末數(shù)學試題(含答案解析)
- 少兒編程獲獎課件
評論
0/150
提交評論