銀川市第三中學(xué)2022-2023學(xué)年高三5月畢業(yè)考試數(shù)學(xué)試題理試題_第1頁
銀川市第三中學(xué)2022-2023學(xué)年高三5月畢業(yè)考試數(shù)學(xué)試題理試題_第2頁
銀川市第三中學(xué)2022-2023學(xué)年高三5月畢業(yè)考試數(shù)學(xué)試題理試題_第3頁
銀川市第三中學(xué)2022-2023學(xué)年高三5月畢業(yè)考試數(shù)學(xué)試題理試題_第4頁
銀川市第三中學(xué)2022-2023學(xué)年高三5月畢業(yè)考試數(shù)學(xué)試題理試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

銀川市第三中學(xué)2022-2023學(xué)年高三5月畢業(yè)考試數(shù)學(xué)試題理試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.劉徽是我國魏晉時期偉大的數(shù)學(xué)家,他在《九章算術(shù)》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補(bǔ),各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機(jī)取一個點(diǎn),此點(diǎn)取自朱方的概率為()A. B. C. D.2.若復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第二象限,則實數(shù)的取值范圍是()A. B. C. D.3.函數(shù)與在上最多有n個交點(diǎn),交點(diǎn)分別為(,……,n),則()A.7 B.8 C.9 D.104.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或15.已知,則()A. B. C. D.6.相傳黃帝時代,在制定樂律時,用“三分損益”的方法得到不同的竹管,吹出不同的音調(diào).如圖的程序是與“三分損益”結(jié)合的計算過程,若輸入的的值為1,輸出的的值為()A. B. C. D.7.設(shè)函數(shù)(,)是上的奇函數(shù),若的圖象關(guān)于直線對稱,且在區(qū)間上是單調(diào)函數(shù),則()A. B. C. D.8.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-29.是的()條件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要10.設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),當(dāng)時,,則使得成立的的取值范圍是()A. B.C. D.11.已知函數(shù),若曲線在點(diǎn)處的切線方程為,則實數(shù)的取值為()A.-2 B.-1 C.1 D.212.已知函數(shù)f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數(shù))的圖象關(guān)于點(diǎn)(2,1)對稱,則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.4二、填空題:本題共4小題,每小題5分,共20分。13.某部門全部員工參加一項社會公益活動,按年齡分為三組,其人數(shù)之比為,現(xiàn)用分層抽樣的方法從總體中抽取一個容量為20的樣本,若組中甲、乙二人均被抽到的概率是,則該部門員工總?cè)藬?shù)為__________.14.已知各項均為正數(shù)的等比數(shù)列的前項積為,,(且),則__________.15.已知正項等比數(shù)列中,,則__________.16.以,為圓心的兩圓均過,與軸正半軸分別交于,,且滿足,則點(diǎn)的軌跡方程為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦點(diǎn)為,,離心率為,點(diǎn)P為橢圓C上一動點(diǎn),且的面積最大值為,O為坐標(biāo)原點(diǎn).(1)求橢圓C的方程;(2)設(shè)點(diǎn),為橢圓C上的兩個動點(diǎn),當(dāng)為多少時,點(diǎn)O到直線MN的距離為定值.18.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;(Ⅱ)已知直線與曲線交于,兩點(diǎn),與軸交于點(diǎn),求.19.(12分)如圖,焦點(diǎn)在軸上的橢圓與焦點(diǎn)在軸上的橢圓都過點(diǎn),中心都在坐標(biāo)原點(diǎn),且橢圓與的離心率均為.(Ⅰ)求橢圓與橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)過點(diǎn)M的互相垂直的兩直線分別與,交于點(diǎn)A,B(點(diǎn)A、B不同于點(diǎn)M),當(dāng)?shù)拿娣e取最大值時,求兩直線MA,MB斜率的比值.20.(12分)某公園有一塊邊長為3百米的正三角形空地,擬將它分割成面積相等的三個區(qū)域,用來種植三種花卉.方案是:先建造一條直道將分成面積之比為的兩部分(點(diǎn)D,E分別在邊,上);再取的中點(diǎn)M,建造直道(如圖).設(shè),,(單位:百米).(1)分別求,關(guān)于x的函數(shù)關(guān)系式;(2)試確定點(diǎn)D的位置,使兩條直道的長度之和最小,并求出最小值.21.(12分)在中,、、分別是角、、的對邊,且.(1)求角的值;(2)若,且為銳角三角形,求的取值范圍.22.(10分)在平面直角坐標(biāo)系中,已知直線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn)的極坐標(biāo)為,直線與曲線的交點(diǎn)為,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因為正方形為朱方,其面積為9,五邊形的面積為,所以此點(diǎn)取自朱方的概率為.故選:C【點(diǎn)睛】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于基礎(chǔ)題.2、B【解析】

復(fù)數(shù),在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第二象限,可得關(guān)于a的不等式組,解得a的范圍.【詳解】,由其在復(fù)平面對應(yīng)的點(diǎn)在第二象限,得,則.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義、不等式的解法,考查了推理能力與計算能力,屬于基礎(chǔ)題.3、C【解析】

根據(jù)直線過定點(diǎn),采用數(shù)形結(jié)合,可得最多交點(diǎn)個數(shù),然后利用對稱性,可得結(jié)果.【詳解】由題可知:直線過定點(diǎn)且在是關(guān)于對稱如圖通過圖像可知:直線與最多有9個交點(diǎn)同時點(diǎn)左、右邊各四個交點(diǎn)關(guān)于對稱所以故選:C【點(diǎn)睛】本題考查函數(shù)對稱性的應(yīng)用,數(shù)形結(jié)合,難點(diǎn)在于正確畫出圖像,同時掌握基礎(chǔ)函數(shù)的性質(zhì),屬難題.4、D【解析】

求得直線的斜率,利用曲線的導(dǎo)數(shù),求得切點(diǎn)坐標(biāo),代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點(diǎn)為,代入直線方程得,解得或1.故選:D【點(diǎn)睛】本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎(chǔ)題.5、C【解析】

利用誘導(dǎo)公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點(diǎn)睛】本題考查誘導(dǎo)公式、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時注意三角函數(shù)的符號.6、B【解析】

根據(jù)循環(huán)語句,輸入,執(zhí)行循環(huán)語句即可計算出結(jié)果.【詳解】輸入,由題意執(zhí)行循環(huán)結(jié)構(gòu)程序框圖,可得:第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,滿足判斷條件;輸出結(jié)果.故選:【點(diǎn)睛】本題考查了循環(huán)語句的程序框圖,求輸出的結(jié)果,解答此類題目時結(jié)合循環(huán)的條件進(jìn)行計算,需要注意跳出循環(huán)的判定語句,本題較為基礎(chǔ).7、D【解析】

根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對稱軸及單調(diào)性即可確定的值,進(jìn)而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關(guān)于直線對稱可得,,即,,由函數(shù)的單調(diào)區(qū)間知,,即,綜上,則,.故選:D【點(diǎn)睛】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,由對稱軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.8、B【解析】

由函數(shù)解析式中含絕對值,所以去絕對值并畫出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當(dāng)時,有最大值,當(dāng)時,有最小值.故選:B.【點(diǎn)睛】本題考查了絕對值函數(shù)圖象的畫法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.9、B【解析】

利用充分條件、必要條件與集合包含關(guān)系之間的等價關(guān)系,即可得出?!驹斀狻吭O(shè)對應(yīng)的集合是,由解得且對應(yīng)的集合是,所以,故是的必要不充分條件,故選B?!军c(diǎn)睛】本題主要考查充分條件、必要條件的判斷方法——集合關(guān)系法。設(shè),如果,則是的充分條件;如果B則是的充分不必要條件;如果,則是的必要條件;如果,則是的必要不充分條件。10、D【解析】構(gòu)造函數(shù),令,則,由可得,則是區(qū)間上的單調(diào)遞減函數(shù),且,當(dāng)x∈(0,1)時,g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;當(dāng)x∈(1,+∞)時,g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函數(shù),當(dāng)x∈(-1,0)時,f(x)>0,(x2-1)f(x)<0∴當(dāng)x∈(-∞,-1)時,f(x)>0,(x2-1)f(x)>0.綜上所述,使得(x2-1)f(x)>0成立的x的取值范圍是.本題選擇D選項.點(diǎn)睛:函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它的應(yīng)用貫穿于整個高中數(shù)學(xué)的教學(xué)之中.某些數(shù)學(xué)問題從表面上看似乎與函數(shù)的單調(diào)性無關(guān),但如果我們能挖掘其內(nèi)在聯(lián)系,抓住其本質(zhì),那么運(yùn)用函數(shù)的單調(diào)性解題,能起到化難為易、化繁為簡的作用.因此對函數(shù)的單調(diào)性進(jìn)行全面、準(zhǔn)確的認(rèn)識,并掌握好使用的技巧和方法,這是非常必要的.根據(jù)題目的特點(diǎn),構(gòu)造一個適當(dāng)?shù)暮瘮?shù),利用它的單調(diào)性進(jìn)行解題,是一種常用技巧.許多問題,如果運(yùn)用這種思想去解決,往往能獲得簡潔明快的思路,有著非凡的功效.11、B【解析】

求出函數(shù)的導(dǎo)數(shù),利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計算能力.12、C【解析】

根據(jù)對稱性即可求出答案.【詳解】解:∵點(diǎn)(5,f(5))與點(diǎn)(﹣1,f(﹣1))滿足(5﹣1)÷2=2,故它們關(guān)于點(diǎn)(2,1)對稱,所以f(5)+f(﹣1)=2,故選:C.【點(diǎn)睛】本題主要考查函數(shù)的對稱性的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、60【解析】

根據(jù)樣本容量及各組人數(shù)比,可求得C組中的人數(shù);由組中甲、乙二人均被抽到的概率是可求得C組的總?cè)藬?shù),即可由各組人數(shù)比求得總?cè)藬?shù).【詳解】三組人數(shù)之比為,現(xiàn)用分層抽樣的方法從總體中抽取一個容量為20的樣本,則三組抽取人數(shù)分別.設(shè)組有人,則組中甲、乙二人均被抽到的概率,∴解得.∴該部門員工總共有人.故答案為:60.【點(diǎn)睛】本題考查了分層抽樣的定義與簡單應(yīng)用,古典概型概率的簡單應(yīng)用,由各層人數(shù)求總?cè)藬?shù)的應(yīng)用,屬于基礎(chǔ)題.14、【解析】

利用等比數(shù)列的性質(zhì)求得,進(jìn)而求得,再利用對數(shù)運(yùn)算求得的值.【詳解】由于,,所以,則,∴,,.故答案為:【點(diǎn)睛】本小題主要考查等比數(shù)列的性質(zhì),考查對數(shù)運(yùn)算,屬于基礎(chǔ)題.15、【解析】

利用等比數(shù)列的通項公式將已知兩式作商,可得,再利用等比數(shù)列的性質(zhì)可得,再利用等比數(shù)列的通項公式即可求解.【詳解】由,所以,解得.,所以,所以.故答案為:【點(diǎn)睛】本題考查了等比數(shù)列的通項公式以及等比中項,需熟記公式,屬于基礎(chǔ)題.16、【解析】

根據(jù)圓的性質(zhì)可知在線段的垂直平分線上,由此得到,同理可得,由對數(shù)運(yùn)算法則可知,從而化簡得到,由此確定軌跡方程.【詳解】,,和的中點(diǎn)坐標(biāo)為,且在線段的垂直平分線上,,即,同理可得:,,,點(diǎn)的軌跡方程為.故答案為:.【點(diǎn)睛】本題考查動點(diǎn)軌跡方程的求解問題,關(guān)鍵是能夠利用圓的性質(zhì)和對數(shù)運(yùn)算法則構(gòu)造出滿足的方程,由此得到結(jié)果.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)當(dāng)=0時,點(diǎn)O到直線MN的距離為定值.【解析】

(1)的面積最大時,是短軸端點(diǎn),由此可得,再由離心率及可得,從而得橢圓方程;(2)在直線斜率存在時,設(shè)其方程為,現(xiàn)橢圓方程聯(lián)立消元()后應(yīng)用韋達(dá)定理得,注意,一是計算,二是計算原點(diǎn)到直線的距離,兩者比較可得結(jié)論.【詳解】(1)因為在橢圓上,當(dāng)是短軸端點(diǎn)時,到軸距離最大,此時面積最大,所以,由,解得,所以橢圓方程為.(2)在時,設(shè)直線方程為,原點(diǎn)到此直線的距離為,即,由,得,,,所以,,,所以當(dāng)時,,,為常數(shù).若,則,,,,,綜上所述,當(dāng)=0時,點(diǎn)O到直線MN的距離為定值.【點(diǎn)睛】本題考查求橢圓方程與橢圓的幾何性質(zhì),考查直線與橢圓的位置關(guān)系,考查運(yùn)算求解能力.解題方法是“設(shè)而不求”法.在直線與圓錐曲線相交時常用此法通過韋達(dá)定理聯(lián)系已知式與待求式.18、(1)(x-1)2+y2=4,直線l的直角坐標(biāo)方程為x-y-2=0;(2)3.【解析】

(1)消參得到曲線的普通方程,利用極坐標(biāo)和直角坐標(biāo)方程的互化公式求得直線的直角坐標(biāo)方程;(2)先得到直線的參數(shù)方程,將直線的參數(shù)方程代入到圓的方程,得到關(guān)于的一元二次方程,由根與系數(shù)的關(guān)系、參數(shù)的幾何意義進(jìn)行求解.【詳解】(1)由曲線C的參數(shù)方程(α為參數(shù))(α為參數(shù)),兩式平方相加,得曲線C的普通方程為(x-1)2+y2=4;由直線l的極坐標(biāo)方程可得ρcosθcos-ρsinθsin=ρcosθ-ρsinθ=2,即直線l的直角坐標(biāo)方程為x-y-2=0.(2)由題意可得P(2,0),則直線l的參數(shù)方程為(t為參數(shù)).設(shè)A,B兩點(diǎn)對應(yīng)的參數(shù)分別為t1,t2,則|PA|·|PB|=|t1|·|t2|,將(t為參數(shù))代入(x-1)2+y2=4,得t2+t-3=0,則Δ>0,由韋達(dá)定理可得t1·t2=-3,所以|PA|·|PB|=|-3|=3.19、(1),(2)【解析】分析:(1)根據(jù)題的條件,得到對應(yīng)的橢圓的上頂點(diǎn),即可以求得橢圓中相應(yīng)的參數(shù),結(jié)合橢圓的離心率的大小,求得相應(yīng)的參數(shù),從而求得橢圓的方程;(2)設(shè)出一條直線的方程,與橢圓的方程聯(lián)立,消元,利用求根公式求得對應(yīng)點(diǎn)的坐標(biāo),進(jìn)一步求得向量的坐標(biāo),將S表示為關(guān)于k的函數(shù)關(guān)系,從眼角函數(shù)的角度去求最值,從而求得結(jié)果.詳解:(Ⅰ)依題意得對:,,得:;同理:.(Ⅱ)設(shè)直線的斜率分別為,則MA:,與橢圓方程聯(lián)立得:,得,得,,所以同理可得.所以,從而可以求得因為,所以,不妨設(shè),所以當(dāng)最大時,,此時兩直線MA,MB斜率的比值.點(diǎn)睛:該題考查的是有關(guān)橢圓與直線的綜合題,在解題的過程中,注意橢圓的對稱性,以及其特殊性,與y軸的交點(diǎn)即為橢圓的上頂點(diǎn),結(jié)合橢圓焦點(diǎn)所在軸,得到相應(yīng)的參數(shù)的值,再者就是應(yīng)用離心率的大小找參數(shù)之間的關(guān)系,在研究直線與橢圓相交的問題時,首先設(shè)出直線的方程,與橢圓的方程聯(lián)立,求得結(jié)果,注意從函數(shù)的角度研究問題.20、(1),.,.(2)當(dāng)百米時,兩條直道的長度之和取得最小值百米.【解析】

(1)由,可解得.方法一:再在中,利用余弦定理,可得關(guān)于x的函數(shù)關(guān)系式;在和中,利用余弦定理,可得關(guān)于x的函數(shù)關(guān)系式.方法二:在中,可得,則有,化簡整理即得;同理,化簡整理即得.(2)由(1)和基本不等式,計算即得.【詳解】解:(1),是邊長為3的等邊三角形,又,,.由,得.法1:在中,由余弦定理,得.故直道長度關(guān)于x的函數(shù)關(guān)系式為,.在和中,由余弦定理,得①②因為M為的中點(diǎn),所以.由①②,得,所以,所以.所以,直道長度關(guān)于x的函數(shù)關(guān)系式為,.法2:因為在中,,所以.所以,直道長度關(guān)于x的函數(shù)關(guān)系式為,.在中,因

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論