版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
浙江省嘉興市第五高級(jí)中學(xué)2024屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若函數(shù)在區(qū)間內(nèi)存在最大值,則實(shí)數(shù)的取值范圍是()A. B.C. D.2.在中,,,,若該三角形有兩個(gè)解,則范圍是()A. B.C. D.3.過(guò)點(diǎn)(-2,1)的直線中,被圓x2+y2-2x+4y=0截得的弦最長(zhǎng)的直線的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=04.計(jì)算復(fù)數(shù):()A. B.C. D.5.已知點(diǎn)在橢圓上,與關(guān)于原點(diǎn)對(duì)稱,,交軸于點(diǎn),為坐標(biāo)原點(diǎn),,則橢圓離心率為()A. B.C. D.6.在正方體中,為棱的中點(diǎn),為棱的中點(diǎn),則直線與平面所成角的正弦值為()A. B.C. D.7.已知橢圓的兩個(gè)焦點(diǎn)分別為,且平行于軸的直線與橢圓交于兩點(diǎn),那么的值為()A. B.C. D.8.已知數(shù)列的前n項(xiàng)和為,,,則()A. B.C.1025 D.20499.下圖是一個(gè)“雙曲狹縫”模型,直桿沿著與它不平行也不相交的軸旋轉(zhuǎn)時(shí)形成雙曲面,雙曲面的邊緣為雙曲線.已知該模型左、右兩側(cè)的兩段曲線(曲線AB與曲線CD)所在的雙曲線離心率為2,曲線AB與曲線CD中間最窄處間的距離為10cm,點(diǎn)A與點(diǎn)C,點(diǎn)B與點(diǎn)D均關(guān)于該雙曲線的對(duì)稱中心對(duì)稱,且|AB|=30cm,則|AD|=()A.10cm B.20cmC.25cm D.30cm10.某公司要建造一個(gè)長(zhǎng)方體狀的無(wú)蓋箱子,其容積為48m3,高為3m,如果箱底每1m2的造價(jià)為15元,箱壁每1m2造價(jià)為12元,則箱子的最低總造價(jià)為()A.72元 B.300元C.512元 D.816元11.已知過(guò)拋物線焦點(diǎn)的直線交拋物線于,兩點(diǎn),則的最小值為()A. B.2C. D.312.函數(shù)在定義域上是增函數(shù),則實(shí)數(shù)m的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)直線的方向向量分別為,若,則實(shí)數(shù)m等于___________.14.定義在R上的函數(shù)滿足,其中為自然對(duì)數(shù)的底數(shù),,則滿足的a的取值范圍是__________.15.在某項(xiàng)測(cè)量中,測(cè)量結(jié)果ξ服從正態(tài)分布(),若ξ在內(nèi)取值的概率為0.4,則ξ在內(nèi)取值的概率為_(kāi)_____16.將全體正整數(shù)排成一個(gè)三角形數(shù)陣(如圖):按照以上排列的規(guī)律,第9行從左向右的第2個(gè)數(shù)為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,底面是平行四邊形,,M,N分別為的中點(diǎn),.(1)證明:;(2)求直線與平面所成角的正弦值.18.(12分)自我國(guó)爆發(fā)新冠肺炎疫情以來(lái),各地醫(yī)療單位都加緊了醫(yī)療用品的生產(chǎn).某醫(yī)療器械廠統(tǒng)計(jì)了口罩生產(chǎn)車間每名工人的生產(chǎn)速度,并將所得數(shù)據(jù)分成五組并繪制出如圖所示的頻率分布直方圖.已知前四組的頻率成等差數(shù)列,第五組與第二組的頻率相等(1)估計(jì)口罩生產(chǎn)車間工人生產(chǎn)速度的中位數(shù)(結(jié)果寫(xiě)成分?jǐn)?shù)的形式);(2)為了解該車間工人的生產(chǎn)速度是否與他們的工作經(jīng)驗(yàn)有關(guān),現(xiàn)從車間所有工人中隨機(jī)抽樣調(diào)查了5名工人的生產(chǎn)速度以及他們的工齡(參加工作的年限),數(shù)據(jù)如下表:工齡x(單位:年)4681012生產(chǎn)速度y(單位:件/小時(shí))4257626267根據(jù)上述數(shù)據(jù)求每名工人的生產(chǎn)速度y關(guān)于他的工齡x的回歸方程,并據(jù)此估計(jì)該車間某位有16年工齡的工人的生產(chǎn)速度附:回歸方程中斜率和截距的最小二乘估計(jì)公式為:,19.(12分)已知正項(xiàng)等差數(shù)列滿足,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和20.(12分)如圖,四邊形為矩形,,且平面平面.(1)若,分別是,的中點(diǎn),求證:平面;(2)若是等邊三角形,求平面與平面夾角的余弦值.21.(12分)已知數(shù)列,,,且,其中為常數(shù)(1)證明:;(2)是否存在,使得為等差數(shù)列?并說(shuō)明理由22.(10分)已知各項(xiàng)為正數(shù)的等比數(shù)列中,,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】利用函數(shù)的導(dǎo)數(shù),求解函數(shù)的極值,推出最大值,然后轉(zhuǎn)化列出不等式組求解的范圍即可【詳解】,或,∴在單調(diào)遞減,在單調(diào)遞增,在單調(diào)遞減,∴f(x)有極大值,要使f(x)在上有最大值,則極大值3即為該最大值,則,又或,∴,綜上,.故選:A.2、D【解析】根據(jù)三角形解得個(gè)數(shù)可直接構(gòu)造不等式求得結(jié)果.【詳解】三角形有兩個(gè)解,,即.故選:D.3、A【解析】當(dāng)直線被圓截得的最弦長(zhǎng)最大時(shí),直線要經(jīng)過(guò)圓心,即圓心在直線上,然后根據(jù)兩點(diǎn)式方程可得所求【詳解】由題意得,圓的方程為,∴圓心坐標(biāo)為∵直線被圓截得的弦長(zhǎng)最大,∴直線過(guò)圓心,又直線過(guò)點(diǎn)(-2,1),所以所求直線的方程為,即故選:A4、D【解析】直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)可得結(jié)論.【詳解】故選:D.5、B【解析】由,得到,結(jié)合,得到,進(jìn)而求得,得出,結(jié)合離心率的定義,即可求解.【詳解】設(shè),則,由,可得,所以,因?yàn)?,可得,又由,兩式相減得,即,即,又因?yàn)?,所以,即又由,所以,解?故選:B.6、D【解析】建立空間直角坐標(biāo)系,計(jì)算平面的法向量,利用線面角的向量公式即得解【詳解】不妨設(shè)正方體的棱長(zhǎng)為2,連接,以為坐標(biāo)原點(diǎn)如圖建立空間直角坐標(biāo)系,則,,,,,,由于平面,平面,故又正方形,故平面故平面,所以為平面的一個(gè)法向量,故直線與平面所成角正弦值為.故選:D7、A【解析】根據(jù)橢圓的方程求出,再由橢圓的對(duì)稱性及定義求解即可.【詳解】由橢圓的對(duì)稱性可知,,所以,又橢圓方程為,所以,解得,所以,故選:A8、B【解析】根據(jù)題意得,進(jìn)而根據(jù)得數(shù)列是等比數(shù)列,公比為,首項(xiàng)為,再根據(jù)等比數(shù)列求和公式求解即可.【詳解】解:因?yàn)閿?shù)列的前n項(xiàng)和為滿足,所以當(dāng)時(shí),,解得,當(dāng)時(shí),,即所以,解得或,因?yàn)?,所?所以,,所以當(dāng)時(shí),,所以,即所以數(shù)列是等比數(shù)列,公比為,首項(xiàng)為,所以故選:B9、B【解析】由離心率求出雙曲線方程,由對(duì)稱性設(shè)出點(diǎn)A,B,D坐標(biāo),求出坐標(biāo),求出答案.【詳解】由題意得:,解得:,因?yàn)殡x心率,所以,,故雙曲線方程為,設(shè),則,,則,所以,則,解得:,故.故選:B10、D【解析】設(shè)這個(gè)箱子的箱底的長(zhǎng)為xm,則寬為m,設(shè)箱子總造價(jià)為f(x)元,則f(x)=72(x)+240,由此利用均值不等式能求出箱子的最低總造價(jià)【詳解】設(shè)這個(gè)箱子的箱底的長(zhǎng)為xm,則寬為m,設(shè)箱子總造價(jià)為f(x)元,∴f(x)=15×16+12×3(2x)=72(x)+240≥144240=816,當(dāng)且僅當(dāng)x,即x=4時(shí),f(x)取最小值816元故選:D11、D【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到韋達(dá)定理,求得,利用拋物線定義,將目標(biāo)式轉(zhuǎn)化為關(guān)于的代數(shù)式,消元后,利用基本不等式即可求得結(jié)果.【詳解】因?yàn)閽佄锞€的焦點(diǎn)的坐標(biāo)為,顯然要滿足題意,直線的斜率存在,設(shè)直線的方程為聯(lián)立可得,其,設(shè)坐標(biāo)為,顯然,則,,根據(jù)拋物線定義,MF=故=4+4令,故4+4當(dāng)且僅當(dāng),即時(shí)取得最小值.故選:D.【點(diǎn)睛】本題考察拋物線中的最值問(wèn)題,涉及到韋達(dá)定理的使用,基本不等式的使用;其中利用的關(guān)系,以及拋物線的定義轉(zhuǎn)化目標(biāo)式,是解決問(wèn)題的關(guān)鍵.12、A【解析】根據(jù)導(dǎo)數(shù)與單調(diào)性的關(guān)系即可求出【詳解】依題可知,在上恒成立,即在上恒成立,所以故選:A二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)向量垂直與數(shù)量積的等價(jià)關(guān)系,,計(jì)算即可.【詳解】因?yàn)?,則其方向向量,,解得.故答案為:2.14、【解析】設(shè),求出其導(dǎo)數(shù)結(jié)合條件得出在上單調(diào)遞減,將問(wèn)題轉(zhuǎn)化為求解,由的單調(diào)性可得答案.【詳解】設(shè),則由,則所以在上單調(diào)遞減.又由,即,即,所以故答案為:15、4##【解析】根據(jù)正態(tài)分布曲線的對(duì)稱性求解【詳解】因?yàn)棣畏恼龖B(tài)分布(),即正態(tài)分布曲線的對(duì)稱軸為,根據(jù)正態(tài)分布曲線的對(duì)稱性,可知ξ在與取值的概率相同,所以ξ在內(nèi)取值的概率為0.4.故答案為:0.416、38【解析】根據(jù)數(shù)陣的規(guī)律求得正確答案.【詳解】數(shù)陣第行有個(gè)數(shù),第行有個(gè)數(shù),并且數(shù)字從開(kāi)始,每次遞增.前行共有個(gè)數(shù),第行從左向右的最后一個(gè)數(shù)是,所以第行從左向右的第個(gè)數(shù)為.故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2)【解析】(1)要證,可證,由題意可得,,易證,從而平面,即有,從而得證;(2)取中點(diǎn),根據(jù)題意可知,兩兩垂直,所以以點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,再分別求出向量和平面的一個(gè)法向量,即可根據(jù)線面角的向量公式求出【詳解】(1)中,,,,由余弦定理可得,所以,.由題意且,平面,而平面,所以,又,所以(2)由,,而與相交,所以平面,因?yàn)?,所以,取中點(diǎn),連接,則兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),如圖所示,建立空間直角坐標(biāo)系,則,又為中點(diǎn),所以.由(1)得平面,所以平面的一個(gè)法向量從而直線與平面所成角的正弦值為【點(diǎn)睛】本題第一問(wèn)主要考查線面垂直的相互轉(zhuǎn)化,要證明,可以考慮,題中與有垂直關(guān)系直線較多,易證平面,從而使問(wèn)題得以解決;第二問(wèn)思路直接,由第一問(wèn)的垂直關(guān)系可以建立空間直角坐標(biāo)系,根據(jù)線面角的向量公式即可計(jì)算得出18、(1)(2)80件/小時(shí)【解析】(1)先利用等差數(shù)列的通項(xiàng)公式和頻率分布直方圖各矩形的面積之和為1求出各組頻率,再利用頻率分布直方圖求中位數(shù);(2)先求出、,利用最小二乘法求出回歸直線方程,再進(jìn)行預(yù)測(cè)其生產(chǎn)速度.【小問(wèn)1詳解】解:設(shè)前4組的頻率分別為,,,,公差為,由頻率分布直方圖,得,即,解得,則,,所以中位數(shù)為.【小問(wèn)2詳解】解:由題意,得,,由所給公式,得,,所以回歸直線方程為,則當(dāng)時(shí),,即估計(jì)該車間某位有16年工齡的工人的生產(chǎn)速度為80件/小時(shí).19、(1);(2).【解析】(1)設(shè)數(shù)首項(xiàng)為,公差為,由,,列出方程組,求得,,即可求出數(shù)列的通項(xiàng)公式;(2),利用列項(xiàng)相消求和法即可得出答案.【詳解】(1)設(shè)數(shù)首項(xiàng)為,公差為,由題得.解得,,(負(fù)值舍去)所以;(2)由(1)得則.20、(1)證明見(jiàn)解析(2)【解析】(1)通過(guò)構(gòu)造平行四邊形,在平面中找到即可證明(2)建立直角坐標(biāo)系,通過(guò)兩個(gè)面的法向量夾角的余弦值求出面面夾角的余弦值【小問(wèn)1詳解】證明:設(shè)為的中點(diǎn),連接,,因?yàn)?,分別為,的中點(diǎn).所以且,又,為的中點(diǎn),所以,且,所以四邊形是平行四邊形,所以,又平面,平面,所以平面;【小問(wèn)2詳解】取的中點(diǎn),連接,,則,∵平面平面,平面平面,∴平面,∵是等邊三角形,為中點(diǎn),∴,分別以,,所在直線為,,軸建立如圖所示的空間直角坐標(biāo)系,則,,,,,,,,.設(shè)為平面的一個(gè)法向量,則有即取可取,設(shè)為平面的一個(gè)法向量,則有即可取,所以,設(shè)平面與平面的夾角為,則,∴,即平面與平面夾角的余弦值為.21、(1)證明見(jiàn)解析(2)存在;理由見(jiàn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO 6583:2024 EN Methanol as a fuel for marine applications - General requirements and specifications
- 2024廣東省林地流轉(zhuǎn)買(mǎi)賣(mài)合同
- 2024法律顧問(wèn)委托合同
- 2024民間抵押借款合同民間借貸合同范本
- 2024房屋裝修合同(范本)
- 新車銷售合同范本樣式
- 不動(dòng)產(chǎn)抵押借款合同范本解析
- 2024蔬菜買(mǎi)賣(mài)合同示范文本
- 2024年墻面裝飾分包工程合同
- 合租住房協(xié)議書(shū)樣本
- 反激變壓器的準(zhǔn)諧振模式= QR計(jì)算
- FIT與PPM轉(zhuǎn)換
- 燈飾中英文術(shù)語(yǔ)
- 提高出院病案7天回收率PDCA持續(xù)改進(jìn)方案
- 爭(zhēng)戰(zhàn)得勝之方江秀琴
- 淺析初中數(shù)學(xué)學(xué)科特點(diǎn)與思想方法
- 施工方案及施工三措
- 生涯彩虹圖(含分析)
- 村廉政風(fēng)險(xiǎn)點(diǎn)及防控措施一覽表檔
- 生管SWOT分析
- (完整版)離子共存問(wèn)題習(xí)題及參考答案(最新(精華版)
評(píng)論
0/150
提交評(píng)論