昭通市重點(diǎn)中學(xué)2024屆高二上數(shù)學(xué)期末考試模擬試題含解析_第1頁
昭通市重點(diǎn)中學(xué)2024屆高二上數(shù)學(xué)期末考試模擬試題含解析_第2頁
昭通市重點(diǎn)中學(xué)2024屆高二上數(shù)學(xué)期末考試模擬試題含解析_第3頁
昭通市重點(diǎn)中學(xué)2024屆高二上數(shù)學(xué)期末考試模擬試題含解析_第4頁
昭通市重點(diǎn)中學(xué)2024屆高二上數(shù)學(xué)期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

昭通市重點(diǎn)中學(xué)2024屆高二上數(shù)學(xué)期末考試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.定義在上的函數(shù)的導(dǎo)函數(shù)為,若對(duì)任意實(shí)數(shù),有,且為奇函數(shù),則不等式解集是A. B.C. D.2.已知定義在上的函數(shù)滿足:,且,則的解集為()A. B.C. D.3.已知拋物線C:,則過拋物線C的焦點(diǎn),弦長為整數(shù)且不超過2022的直線的條數(shù)是()A.4037 B.4044C.2019 D.20224.阿基米德(公元前287年~公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓C的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在y軸上,且橢圓C的離心率為,面積為6π,則橢圓C的標(biāo)準(zhǔn)方程為()A. B.C. D.5.直線與圓相交于點(diǎn),點(diǎn)是坐標(biāo)原點(diǎn),若是正三角形,則實(shí)數(shù)的值為A.1 B.-1C. D.6.函數(shù)直線與的圖象相交于A、B兩點(diǎn),則的最小值為()A.3 B.C. D.7.如圖,在直三棱柱中,且,點(diǎn)E為中點(diǎn).若平面過點(diǎn)E,且平面與直線AB所成角和平面與平面所成銳二面角的大小均為30°,則這樣的平面有()A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)8.直線y=x+1與圓x2+y2=1的位置關(guān)系為A.相切B.相交但直線不過圓心C.直線過圓心D.相離9.設(shè)橢圓C:的左、右焦點(diǎn)分別為、,P是C上的點(diǎn),⊥,∠=,則C的離心率為A. B.C. D.10.在長方體中,,,則異面直線與所成角的正弦值是()A. B.C. D.11.已知橢圓上的一點(diǎn)到橢圓一個(gè)焦點(diǎn)的距離為3,則點(diǎn)到另一焦點(diǎn)的距離為()A.1 B.3C.5 D.712.學(xué)校為了解學(xué)生在課外讀物方面的支出情況,抽取了n位同學(xué)進(jìn)行調(diào)查,結(jié)果顯示這些同學(xué)的支出都在(單位:元)內(nèi),其中支出在(單位:元)內(nèi)的同學(xué)有67人,其頻率分布直方圖如圖所示,則n的值為()A.100 B.120C.130 D.390二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的通項(xiàng)公式為,記數(shù)列的前項(xiàng)和為,則__________,的最小值為__________14.在的展開式中項(xiàng)的系數(shù)為______.(結(jié)果用數(shù)值表示)15.用一個(gè)平面去截半徑為5cm的球,截面面積是則球心到截面的距離為_______16.已知銳角的內(nèi)角,,的對(duì)邊分別為,,,且.若,則外接圓面積的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,從參加環(huán)保知識(shí)競賽的學(xué)生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:(1)[79.5,89.5)這一組的頻數(shù)、頻率分別是多少?(2)估計(jì)這次環(huán)保知識(shí)競賽的眾數(shù)、中位數(shù)、平均數(shù)是多少?18.(12分)已知數(shù)列滿足各項(xiàng)均不為0,,且,.(1)證明:為等差數(shù)列,并求的通項(xiàng)公式;(2)令,,求.19.(12分)如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AD//BC,AB=BC=CD=1,AD=2,直線BC與平面PCD所成角的正弦值為.(1)求證:平面PCD⊥平面PAC;(2)求平面PAB與平面PCD所成銳二面角的余弦值.20.(12分)已知函數(shù),其中a為正數(shù)(1)討論單調(diào)性;(2)求證:21.(12分)已知函數(shù)f(x)=x3﹣3ax2+2bx在x=處有極大值.(1)求a、b的值;(2)求f(x)在[0,2]上的值域.22.(10分)二項(xiàng)式展開式中第五項(xiàng)的二項(xiàng)式系數(shù)是第三項(xiàng)系數(shù)的4倍.求:(1);(2)展開式中的所有的有理項(xiàng).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】設(shè).由,得,故函數(shù)在上單調(diào)遞減.由為奇函數(shù),所以.不等式等價(jià)于,即,結(jié)合函數(shù)的單調(diào)性可得,從而不等式的解集為,故答案為B.考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.【方法點(diǎn)晴】本題考查了導(dǎo)數(shù)的綜合應(yīng)用及函數(shù)的性質(zhì)的應(yīng)用,構(gòu)造函數(shù)的思想,閱讀分析問題的能力,屬于中檔題.常見的構(gòu)造思想是使含有導(dǎo)數(shù)的不等式一邊變?yōu)?,即得,?dāng)是形如時(shí)構(gòu)造;當(dāng)是時(shí)構(gòu)造,在本題中令,(),從而求導(dǎo),從而可判斷單調(diào)遞減,從而可得到不等式的解集2、A【解析】令,利用導(dǎo)數(shù)可判斷其單調(diào)性,從而可解不等式.【詳解】設(shè),則,故為上的增函數(shù),而可化為即,故即,所以不等式的解集為,故選:A.3、A【解析】根據(jù)已知條件,結(jié)合拋物線的性質(zhì),先求出過焦點(diǎn)的最短弦長,再結(jié)合拋物線的對(duì)稱性,即可求解【詳解】∵拋物線C:,即,由拋物線的性質(zhì)可得,過拋物線焦點(diǎn)中,長度最短的為垂直于y軸的那條弦,則過拋物線C的焦點(diǎn),長度最短的弦的長為,由拋物線的對(duì)稱性可得,弦長在5到2022之間的有共有條,故弦長為整數(shù)且不超過2022的直線的條數(shù)是故選:A4、D【解析】設(shè)橢圓的方程為,根據(jù)題意得到和,求得的值,即可求解.【詳解】由題意,橢圓的焦點(diǎn)在軸上,可設(shè)橢圓的方程為,因?yàn)闄E圓C的離心率為,可得,又由,即,解得,又因?yàn)闄E圓的面積為,可得,即,聯(lián)立方程組,解答,所以橢圓方程為.故選:D.5、C【解析】由題意得,直線被圓截得的弦長等于半徑.圓的圓心坐標(biāo),設(shè)圓半徑為,圓心到直線的距離為,則由條件得,整理得所以,解得.選C6、C【解析】先求出AB坐標(biāo),表示出,規(guī)定函數(shù),其中,利用導(dǎo)數(shù)求最小值.【詳解】聯(lián)立解得可得點(diǎn).聯(lián)立解得可得點(diǎn).由題意可得解得,令,其中,∴.∴函數(shù)單調(diào)遞減;.因此,的最小值為故選:C【點(diǎn)睛】距離的最值求解:(1)幾何法求最值;(2)代數(shù)法:表示出距離,利用函數(shù)求最值.7、B【解析】構(gòu)造出長方體,取中點(diǎn)連接然后利用臨界位置分情況討論即可.【詳解】如圖,構(gòu)造出長方體,取中點(diǎn),連接則所有過點(diǎn)與成角的平面,均與以為軸的圓錐相切,過點(diǎn)繞且與成角,當(dāng)與水平面垂直且在面的左側(cè)(在長方體的外面)時(shí),與面所成角為75°(與面成45°,與成30°),過點(diǎn)繞旋轉(zhuǎn),轉(zhuǎn)一周,90°顯然最大,到了另一個(gè)邊界(在面與之間)為15度,即與面所成角從75°→90°→15°→90°→75°變化,此過程中,有兩次角為30

,綜上,這樣的平面α有2個(gè),故選:B.8、B【解析】求出圓心到直線的距離d,與圓的半徑r比較大小即可判斷出直線與圓的位置關(guān)系,同時(shí)判斷圓心是否在直線上,即可得到正確答案解:由圓的方程得到圓心坐標(biāo)(0,0),半徑r=1則圓心(0,0)到直線y=x+1的距離d==<r=1,把(0,0)代入直線方程左右兩邊不相等,得到直線不過圓心所以直線與圓的位置關(guān)系是相交但直線不過圓心故選B考點(diǎn):直線與圓的位置關(guān)系9、D【解析】詳解】由題意可設(shè)|PF2|=m,結(jié)合條件可知|PF1|=2m,|F1F2|=m,故離心率e=選D.點(diǎn)睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個(gè)關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.10、C【解析】連接,可得,得到異面直線與所成角即為直線與所成角,設(shè),設(shè),求得的值,在中,利用余弦定理,即可求解.【詳解】如圖所示,連接,在正方體中,可得,所以異面直線與所成角即為直線與所成角,設(shè),由在長方體中,,,設(shè),可得,在直角中,可得,在中,可得,所以,因?yàn)?,所?故選:C.11、D【解析】由橢圓的定義可以直接求得點(diǎn)到另一焦點(diǎn)的距離.【詳解】設(shè)橢圓的左、右焦點(diǎn)分別為、,由已知條件得,由橢圓定義得,其中,則.故選:.12、A【解析】根據(jù)小矩形的面積之和,算出位于10~30的2組數(shù)的頻率之和為0.33,從而得到位于30~50的數(shù)據(jù)的頻率之和為1-0.33=0.67,再由頻率計(jì)算公式即可算出樣本容量的值.【詳解】位于10~20、20~30的小矩形的面積分別為位于10~20、20~30的據(jù)的頻率分別為0.1、0.23可得位于10~30的前3組數(shù)的頻率之和為0.1+0.23=0.33由此可得位于30~50數(shù)據(jù)的頻率之和為1-0.33=0.67∵支出在[30,50)的同學(xué)有67人,即位于30~50的頻數(shù)為67,∴根據(jù)頻率計(jì)算公式,可得解之得.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】首先確定的正負(fù),分別在和兩種情況下求得,代入即可求得;由可求得,分別在和兩種情況下結(jié)合一次函數(shù)和對(duì)勾函數(shù)單調(diào)性得到最小值,綜合可得最終結(jié)果.【詳解】令,解得:,則當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;;,當(dāng)時(shí),;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增,又,,,當(dāng)時(shí),;綜上所述:.故答案為:;.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查含絕對(duì)值的數(shù)列前項(xiàng)和的求解問題,解題關(guān)鍵是能夠確定數(shù)列的變號(hào)項(xiàng),從而以變號(hào)項(xiàng)為分類基準(zhǔn)進(jìn)行分類討論得到數(shù)列的前項(xiàng)和;求解數(shù)列中的最值問題的關(guān)鍵是能夠利用數(shù)列與函數(shù)的關(guān)系,結(jié)合函數(shù)單調(diào)性和來進(jìn)行求解.14、【解析】先求解出該二項(xiàng)式展開式的通項(xiàng),然后求解出滿足題意的項(xiàng)數(shù)值,帶入通項(xiàng)即可求解出展開式的系數(shù).【詳解】展開式通項(xiàng)為,由題意,令,解得,,所以項(xiàng)的系數(shù)為.故答案為:.15、4cm【解析】根據(jù)圓面積公式算出截面圓的半徑,利用球的截面圓性質(zhì)與勾股定理算出球心到截面的距離【詳解】解:設(shè)截面圓的半徑為r,截面的面積是,,可得又球的半徑為5cm,根據(jù)球的截面圓性質(zhì),可得截面到球心的距離為故答案為:4cm【點(diǎn)睛】本題主要考查了球的截面圓性質(zhì)、勾股定理等知識(shí),考查了空間想象能力,屬于基礎(chǔ)題16、【解析】利用二倍角公式求出,即可得到,再利用余弦定理及基本不等式求出的取值范圍,再利用正弦定理求出外接圓的半徑,即可求出外接圓的面積;【詳解】解:因?yàn)?,所以,解得或(舍去).又為銳角三角形,所以.因?yàn)?,?dāng)且僅當(dāng)時(shí)等號(hào)成立,所以.外接圓的半徑,故外接圓面積的最小值為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)0.25,15;(2)眾數(shù)為74.5,中位數(shù)為72.8,平均分為70.5.【解析】(1)直接利用頻率和頻數(shù)公式求解;(2)利用頻率分布直方圖的公式求眾數(shù)、中位數(shù)、平均數(shù).【詳解】(1)頻率=(89.5-79.5)×0.025=0.25;頻數(shù)=60×0.25=15.(2)[69.5,79.5)一組的頻率最大,人數(shù)最多,則眾數(shù)為74.5,左邊三個(gè)矩形的面積和為0.4,左邊四個(gè)矩形的面積和為0.7,所以中位數(shù)在第4個(gè)矩形中,設(shè)中位數(shù)為,所以中位數(shù)為72.8.平均分為44.5×0.1+54.5×0.15+64.5×0.15+74.5×0.3+84.5×0.25+94.5×0.05=70.518、(1)證明見解析,,(2)【解析】(1)根據(jù)題意,結(jié)合遞推公式,易知,即可求證;(2)根據(jù)題意,結(jié)合錯(cuò)位相減法,即可求解.【小問1詳解】∵,∴,,∴等差數(shù)列,首項(xiàng)為,公差為3.∴,即,.【小問2詳解】根據(jù)題意,得,,①,②①-②得,故.19、(1)證明見解析(2)【解析】(1)取的中點(diǎn),連接,證明,由線面垂直的判定定理可證明平面,再利用面面垂直的判定定理可證得結(jié)論,(2)過點(diǎn)作于,以為原點(diǎn),建立空間直角坐標(biāo)系,如圖所示,設(shè),先根據(jù)直線BC與平面PCD所成角的正弦值為,求出,然后再求出平面PAB的法向量,利用向量的夾角公式可求得結(jié)果【小問1詳解】證明:取的中點(diǎn),連接,因?yàn)锳D//BC,AB=BC=CD=1,AD=2,所以,∥,所以四邊形為平行四邊形,所以,所以,因?yàn)槠矫妫矫?,所以,因?yàn)?,所以平面,因?yàn)槠矫?,所以平面平面,【小?詳解】過點(diǎn)作于,以為原點(diǎn),建立空間直角坐標(biāo)系,如圖所示,在等腰梯形中,AD//BC,AB=BC=CD=1,AD=2,則,所以設(shè)因?yàn)槠矫妫运?設(shè)平面的法向量為,則,令,則,因?yàn)橹本€BC與平面PCD所成角的正弦值為,所以,解得,所以,,設(shè)平面的法向量為,因?yàn)?,所以,令,則,所以,所以平面PAB與平面PCD所成銳二面角的余弦值為20、(1)答案見解析(2)證明見解析【解析】(1)求解函數(shù)的導(dǎo)函數(shù),并且求的兩個(gè)根,然后分類討論,和三種情況下對(duì)應(yīng)的單調(diào)性;(2)令,通過二次求導(dǎo)法,判斷函數(shù)的單調(diào)性與最小值,設(shè)的零點(diǎn)為,求出取值范圍,最后將轉(zhuǎn)化為的對(duì)勾函數(shù)并求解最小值,即可證明出不等式.【小問1詳解】函數(shù)的定義域?yàn)椤吡畹谩?,∴,得或①?dāng),即時(shí),時(shí),或;時(shí),.∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增②當(dāng),即時(shí),時(shí),或;時(shí),.∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增③當(dāng),即時(shí),∴在上單調(diào)遞增綜上所述:當(dāng)時(shí),在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),在上單調(diào)遞增【小問2詳解】令,()∴,令∴,∴在上單調(diào)遞增又∵,,∴使得,即(*)∴當(dāng)時(shí),,∴,∴單調(diào)遞減∴當(dāng)時(shí),,∴,∴單調(diào)遞增∴,()由(*)式可知:,∴,∴∵,∴函數(shù)單調(diào)遞減∴,∴∴【點(diǎn)睛】求解本題的關(guān)鍵是利用二次求導(dǎo)法,通過虛設(shè)零點(diǎn),求解原函數(shù)的單調(diào)性與最小值,并通過最小值的取值范圍證明不等式.21、(1)(2)【解析】(1)由于在點(diǎn)處有極小值,所以,從而可求出、的值;(2)由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論