天津市楊村第一中學2023-2024學年高二數(shù)學第一學期期末復習檢測試題含解析_第1頁
天津市楊村第一中學2023-2024學年高二數(shù)學第一學期期末復習檢測試題含解析_第2頁
天津市楊村第一中學2023-2024學年高二數(shù)學第一學期期末復習檢測試題含解析_第3頁
天津市楊村第一中學2023-2024學年高二數(shù)學第一學期期末復習檢測試題含解析_第4頁
天津市楊村第一中學2023-2024學年高二數(shù)學第一學期期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

天津市楊村第一中學2023-2024學年高二數(shù)學第一學期期末復習檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的漸近線方程為A. B.C. D.2.命題“若,都是偶數(shù),則也是偶數(shù)”的逆否命題是A.若是偶數(shù),則與不都是偶數(shù)B.若是偶數(shù),則與都不是偶數(shù)C.若不是偶數(shù),則與不都是偶數(shù)D.若不是偶數(shù),則與都不是偶數(shù)3.已知雙曲線,則雙曲線M的漸近線方程是()A. B.C. D.4.已知全集,集合,則()A. B.C. D.5.已知雙曲線C:(a>0,b>0),斜率為的直線與雙曲線交于不同的兩點,且線段的中點為P(2,4),則雙曲線的漸近線方程為()A. B.C. D.6.等差數(shù)列的公差,且,,則的通項公式是()A. B.C. D.7.如圖,是邊長為4的等邊三角形的中位線,將沿折起,使得點A與P重合,平面平面,則四棱錐外接球的表面積是()A. B.C. D.8.已知隨機變量服從正態(tài)分布,且,則()A.0.6 B.0.4C.0.3 D.0.29.已知經過兩點(5,m)和(m,8)的直線的斜率等于1,則m的值為()A.5 B.8C. D.710.已知函數(shù)在區(qū)間上是增函數(shù),則實數(shù)的取值范圍是()A. B.C. D.11.已知,若,則()A. B.2C. D.e12.已知數(shù)列的通項公式為.若數(shù)列的前n項和為,則取得最大值時n的值為()A.2 B.3C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.在下列三個問題中:①甲乙二人玩勝負游戲:每人一次拋擲兩枚質地均勻的硬幣,如果規(guī)定:同時出現(xiàn)正面或反面算甲勝,一個正面、一個反面算乙勝,那么這個游戲是公平的;②擲一枚骰子,估計事件“出現(xiàn)三點”的概率,當拋擲次數(shù)很大時,此事件發(fā)生的頻率接近其概率;③如果氣象預報1日—30日的下雨概率是,那么1日—30日中就有6天是下雨的;其中,正確的是___________.(用序號表示)14.關于曲線,給出下列三個結論:①曲線關于原點對稱,但不關于軸、軸對稱;②曲線恰好經過4個整點(即橫、縱坐標均為整數(shù)的點);③曲線上任意一點到原點的距離都不大于.其中,正確結論的序號是________.15.設空間向量,且,則___________.16.已知集合,集合,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓.(1)求過點M(2,1)的圓的切線方程;(2)直線過點且被圓截得的弦長為2,求直線的方程;(3)已知圓的圓心在直線y=1上,與y軸相切,且與圓相外切,求圓的標準方程.18.(12分)在中,內角的對邊分別是,且(1)求角的大?。?)若,且,求的面積19.(12分)如圖,△ABC中,,,在三角形內挖去一個半圓(圓心O在邊BC上,半圓與AC、AB分別相切于點C,M,與BC交于點N),將△ABC繞直線BC旋轉一周得到一個旋轉體(1)求該幾何體中間一個空心球表面積的大??;(2)求圖中陰影部分繞直線BC旋轉一周所得旋轉體的體積20.(12分)設數(shù)列的前n項和為,且,數(shù)列(1)求和的通項公式;(2)設數(shù)列的前n項和為,證明:21.(12分)已知數(shù)列的前n項和為,滿足,(1)求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;(2)設,為數(shù)列的前n項和,①求;②若不等式對任意的正整數(shù)n恒成立,求實數(shù)的取值范圍22.(10分)設函數(shù),其中是自然對數(shù)的底數(shù),.(1)若,求的最小值;(2)若,證明:恒成立.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)雙曲線的漸近線方程知,,故選A.2、C【解析】命題的逆否命題是將條件和結論對換后分別否定,因此“若都是偶數(shù),則也是偶數(shù)”的逆否命題是若不是偶數(shù),則與不都是偶數(shù)考點:四種命題3、C【解析】由雙曲線的方程直接求出見解析即可.【詳解】由雙曲線,則其漸近線方程為:故選:C4、B【解析】根據(jù)題意先求出,再利用交集定義即可求解.【詳解】全集,集合,則,故故選:B5、C【解析】設,代入雙曲線方程相減后可求得,從而得漸近線方程【詳解】設,則,相減得,∴,又線段的中點為P(2,4),的斜率為1,∴,,∴漸近線方程為故選:C【點睛】方法點睛:本題考查求雙曲線的漸近線方程,已知弦的中點(或涉及到中點),可設弦兩端點的坐標,代入雙曲線方程后作差,作差后式子中有直線的斜率,弦中點坐標,有.這種方法叫點差法6、C【解析】由于數(shù)列為等差數(shù)列,所以,再由可得可以看成一元二次方程的兩個根,由可知,所以,從而可求出,可得到通項公式.【詳解】解:因為數(shù)列為等差數(shù)列,所以,因為,所以可以看成一元二次方程的兩個根,因為,所以,所以,解得,所以故選:C【點睛】此題考查的是等差數(shù)列的通項公式和性質,屬于基礎題.7、A【解析】分別取的中點,易得,則點為四邊形的外接圓的圓心,則四棱錐外接球的球心在過點且垂直平面的直線上,設球心為,設外接球的半徑為,,利用勾股定理求得半徑,從而可得出答案.【詳解】解:分別取的中點,在等邊三角形中,,是中位線,則都是等邊三角形,所以,所以點為四邊形的外接圓的圓心,則四棱錐外接球的球心在過點且垂直平面的直線上,設球心為,由為的中點,所以,因為平面平面,且平面平面,平面,所以平面,則,設外接球半徑為,,,則,,所以,解得,所以,所以四棱錐外接球的表面積是.故選:A.第II卷8、A【解析】根據(jù)正態(tài)曲線的對稱性即可求得答案.【詳解】由題意,正態(tài)曲線的對稱軸為,則與關于對稱軸對稱,于是.故選:A.9、C【解析】根據(jù)斜率的公式直接求解即可.【詳解】由題可知,,解得.故選:C【點睛】本題主要考查了兩點間斜率的計算公式,屬于基礎題.10、D【解析】由在上恒成立,再轉化為求函數(shù)的取值范圍可得【詳解】由已知,在上是增函數(shù),則在上恒成立,即,,當時,,所以故選:D11、B【解析】求得導函數(shù),則,計算即可得出結果.【詳解】,.,解得:.故選:B12、C【解析】根據(jù)單調性分析出數(shù)列的正數(shù)項有哪些即可求解.【詳解】由條件有,當時,,即;當時,,即.即,所以取得最大值時n的值為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、①②【解析】以甲乙獲勝概率是否均為來判斷游戲是否公平,并以此來判斷①的正確性;以頻率和概率的關系來判斷②③的正確性.【詳解】①中:甲乙二人玩勝負游戲:每人一次拋擲兩枚質地均勻的硬幣,可得4種可能的結果:(正,正),(正,反),(反,正),(反,反)則“同時出現(xiàn)正面或反面”的概率為,“一個正面、一個反面”的概率為即甲乙二人獲勝的概率均為,那么這個游戲是公平的.判斷正確;②中:“擲一枚骰子出現(xiàn)三點”是一個隨機事件,當拋擲次數(shù)很大時,此事件發(fā)生的頻率會穩(wěn)定于其概率值,故此事件發(fā)生的頻率接近其概率.判斷正確;③中:氣象預報1日—30日的下雨概率是,那么1日—30日每天下雨的概率均是,每天都有可能下雨也可能不下雨,故1日—30日中出現(xiàn)下雨的天數(shù)是隨機的,可能是0天,也可能是1天、2天、3天……,不一定是6天.判斷錯誤.故答案為:①②14、①③【解析】設為曲線上任意一點,判斷、、是否滿足曲線方程即可判斷①;求出曲線過的整點即可判斷②;由條件利用即可得,即可判斷③;即可得解.【詳解】設為曲線上任意一點,則,設點關于原點、軸、軸的對稱點分別為、、,因為;;;所以點在曲線上,點、點不在曲線上,所以曲線關于原點對稱,但不關于軸、軸對稱,故①正確;當時,;當,.此外,當時,;當時,.故曲線過整點,,,,,,故②錯誤;又,所以恒成立,由可得,當且僅當時等號成立,所以,所以曲線上任一點到原點的距離,故③正確.故答案為:①③.【點睛】本題考查了與曲線方程有關的命題真假判斷,屬于中檔題.15、1【解析】根據(jù),由求解.【詳解】因為向量,且,所以,即,解得.故答案為:116、##(-1,2]【解析】根據(jù)兩集合的并集的含義,即可得答案.【詳解】因為集合,集合,所以,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)y=1;(2)x+y-2=0;(3).【解析】(1)將圓的一般方程化為圓的標準方程,結合圖形即可求出結果;(2)根據(jù)題意可知直線過圓心,利用直線的兩點式方程計算即可得出結果;(3)設圓E的圓心E(a,1),根據(jù)題意可得圓E的半徑為,結合圓與圓的位置關系和兩點距離公式計算求出,進而得出圓的標準方程.【小問1詳解】圓,即,其圓心為,半徑為1.因為點(2,1)在圓上,如圖,所以切線方程為y=1;【小問2詳解】由題意得,圓的直徑為2,所以直線過圓心,由直線的兩點式方程,得,即直線的方程為x+y-2=0;【小問3詳解】因為圓E的圓心在直線y=1上,設圓E的圓心E(a,1),由圓E與y軸相切,得R=a()又圓E與圓相外切,所以,由兩點距離公式得,所以,解得,所以圓心,,所以圓E的方程為.18、(1);(2)【解析】(1)根據(jù),通過余弦定理求解.(2)根據(jù),通過正弦定理,把角轉化為邊得,再根據(jù),得.再代入的面積公式求解.【詳解】(1)∵,∴由余弦定理得,又,∴.(2)∵,∴由正弦定理得,∵,∴,又,∴∴面積【點睛】本題主要考查余弦定理和正弦定理的應用,還考查了運算求解的能力,屬于中檔題.19、(1);(2).【解析】根據(jù)旋轉體的軸截面圖,根據(jù)已知條件求球的半徑與長,再利用球體、圓錐的面積、體積公式計算即可.【小問1詳解】連接,則,設,在中,,;【小問2詳解】,∴圓錐球.20、(1),(2)證明見解析【解析】(1)根據(jù)可得,從而可得;(2)利用錯位相減法可得,從而可得,又,即可證明不等式成立.【小問1詳解】解:∵,∴當時,,當時,,∴,經檢驗,也符合,∴,;【小問2詳解】證明:因為,∴,∴∴,又∵,∴,所以21、(1)證明見解析,(2)①;②【解析】(1)由得到,即可得到,從而得證,即可求出的通項公式,從而得到的通項公式;(2)①由(1)可得,再利用錯位相減法求和即可;②利用作差法證明的單調性,即可得到,即可得到,再解一元二次不等式即可;【小問1詳解】證明:由,,當時,可得,解得,當時,,又,兩式相減得,所以,所以,即,則數(shù)列是首項為,公比為的等比數(shù)列;所以,所以【小問2詳解】解:①由(1)可得,所以,所以,所以,所以整理得②由①知,所以,即單調遞增,所以,因為不等式對任意的正整數(shù)n恒成立,所以,即,解得或,即22、(1)(2)證明見解析【解析】(1)當時,,求出,可得答案;(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論