四川省三臺中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末統(tǒng)考試題含解析_第1頁
四川省三臺中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末統(tǒng)考試題含解析_第2頁
四川省三臺中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末統(tǒng)考試題含解析_第3頁
四川省三臺中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末統(tǒng)考試題含解析_第4頁
四川省三臺中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

四川省三臺中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末統(tǒng)考試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)雙曲線的實軸長為8,一條漸近線為,則雙曲線的方程為()A. B.C. D.2.設(shè)雙曲線()的焦距為12,則()A.1 B.2C.3 D.43.已知拋物線,過其焦點且斜率為1的直線交拋物線于A,B兩點,若線段AB的中點的橫坐標(biāo)為3,則該拋物線的準(zhǔn)線方程為()A. B.C. D.4.在平行六面體中,,,,則()A. B.5C. D.35.在等差數(shù)列中,已知,則()A.4 B.8C.3 D.66.如圖甲是第七屆國際數(shù)學(xué)家大會(簡稱ICME—7)的會徽圖案,其主體圖案是由圖乙的一連串直角三角形演化而成的.已知,,,,為直角頂點,設(shè)這些直角三角形的周長從小到大組成的數(shù)列為,令,為數(shù)列的前項和,則()A.8 B.9C.10 D.117.在中國共產(chǎn)黨建黨100周年之際,廣安市某中學(xué)組織了“黨史知識競賽”活動,已知該校共有高中學(xué)生1000人,用分層抽樣的方法從該校高中學(xué)生中抽取一個容量為25的樣本參加活動,其中高二年級抽取了8人,則該校高二年級學(xué)生人數(shù)為()A.960 B.720C.640 D.3208.如圖,、分別為橢圓的左、右焦點,為橢圓上的點,是線段上靠近的三等分點,為正三角形,則橢圓的離心率為()A. B.C. D.9.已知{an}是以10為首項,-3為公差的等差數(shù)列,則當(dāng){an}的前n項和Sn,取得最大值時,n=()A.3 B.4C.5 D.610.“且”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件11.焦點坐標(biāo)為的拋物線的標(biāo)準(zhǔn)方程是()A. B.C. D.12.函數(shù)的部分圖像為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某人有樓房一棟,室內(nèi)面積共計,擬分割成兩類房間作為旅游客房,大房間每間面積為,可住游客4名,每名游客每天的住宿費100元;小房間每間面積為,可住游客2名,每名游客每天的住宿費150元;裝修大房間每間需要3萬元,裝修小房間每間需要2萬元.如果他只能籌款25萬元用于裝修,且假定游客能住滿客房,則該人一天能獲得的住宿費的最大值為___________元.14.直線與曲線有且僅有一個公共點.則b的取值范圍是__________15.六面體的所有棱長都為2,底面ABCD是正方形,AC與BD的交點是O,若,則___________.16.在的展開式中,含項的系數(shù)為______(結(jié)果用數(shù)值表示)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)記為等差數(shù)列的前n項和,已知.(1)求的通項公式;(2)求的最小值.18.(12分)已知一張紙上畫有半徑為4圓O,在圓O內(nèi)有一個定點A,且,折疊紙片,使圓上某一點剛好與A點重合,這樣的每一種折法,都留下一條直線折痕,當(dāng)取遍圓上所有點時,所有折痕與的交點形成的曲線記為C.(1)求曲線C的焦點在軸上的標(biāo)準(zhǔn)方程;(2)過曲線C的右焦點(左焦點為)的直線l與曲線C交于不同的兩點M,N,記的面積為S,試求S的取值范圍.19.(12分)隨著生活條件的改善,人們健身意識的增強,健身器械比較暢銷,某商家為了解某種健身器械如何定價可以獲得最大利潤,現(xiàn)對這種健身器械進行試銷售.統(tǒng)計后得到其單價x(單位:百元)與銷量y(單位:個)的相關(guān)數(shù)據(jù)如下表:單價x(百元/個)3035404550日銷售量y(個)1401301109080(1)已知銷量y與單價x具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;(2)若每個健身器械的成本為25百元,試銷售結(jié)束后,請利用(1)中所求的線性回歸方程確定單價為多少百元時,銷售利潤最大?(結(jié)果保留到整數(shù)),附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為.參考數(shù)據(jù):.20.(12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直,,,.(1)求點C到平面的距離;(2)線段上是否存在點F,使與平面所成角正弦值為,若存在,求出,若不存在,說明理由.21.(12分)已知平面直角坐標(biāo)系上一動點滿足:到點的距離是到點的距離的2倍.(1)求點的軌跡方程;(2)若點與點關(guān)于直線對稱,求的最大值.22.(10分)設(shè)橢圓:()的離心率為,橢圓上一點到左右兩個焦點、的距離之和是4.(1)求橢圓的方程;(2)已知過的直線與橢圓交于、兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】雙曲線的實軸長為,漸近線方程為,代入解析式即可得到結(jié)果.【詳解】雙曲線的實軸長為8,即,,漸近線方程為,進而得到雙曲線方程為.故選:D.2、B【解析】根據(jù)可得關(guān)于的方程,解方程即可得答案.【詳解】因為可化為,所以,則.故選:B.【點睛】本題考查已知雙曲線的焦距求參數(shù)的值,考查函數(shù)與方程思想,考查運算求解能力,屬于基礎(chǔ)題.3、B【解析】設(shè),進而根據(jù)題意,結(jié)合中點弦的問題得,進而再求解準(zhǔn)線方程即可.【詳解】解:根據(jù)題意,設(shè),所以①,②,所以,①②得:,即,因為直線AB的斜率為1,線段AB的中點的橫坐標(biāo)為3,所以,即,所以拋物線,準(zhǔn)線方程為.故選:B4、B【解析】由,則結(jié)合已知條件及模長公式即可求解.【詳解】解:,所以,所以,故選:B.5、B【解析】根據(jù)等差數(shù)列的性質(zhì)計算出正確答案.【詳解】由等差數(shù)列的性質(zhì)可知,得.故選:B6、B【解析】由題意可得的邊長,進而可得周長及,進而可得,可得解.【詳解】由,可得,,,,所以,,所以前項和,所以,故選:B.7、D【解析】由分層抽樣各層成比例計算即可【詳解】設(shè)高二年級學(xué)生人數(shù)為,則,解得故選:D8、D【解析】根據(jù)橢圓定義及正三角形的性質(zhì)可得到\,再在中運用余弦定理得到、的關(guān)系,進而求得橢圓的離心率【詳解】由橢圓的定義知,,則,因為正三角形,所以,在中,由余弦定理得,則,,故選:D【點睛】本題考查橢圓的離心率的求解,考查考生的邏輯推理能力及運算求解能力,屬于中等題.9、B【解析】由題可得當(dāng)時,,當(dāng)時,,即得.【詳解】∵{an}是以10為首項,-3為公差的等差數(shù)列,∴,故當(dāng)時,,當(dāng)時,,故時,取得最大值故選:B.10、B【解析】根據(jù)充分條件、必要條件的定義和橢圓的標(biāo)椎方程,判斷可得出結(jié)論.【詳解】解:充分性:當(dāng),方程表示圓,充分性不成立;必要性:若方程表示橢圓,則,必有且,必要性成立,因此,“且”是“方程表示橢圓”的必要不充分條件.故選:B.11、D【解析】依次確定選項中各個拋物線的焦點坐標(biāo)即可.【詳解】對于A,的焦點坐標(biāo)為,A錯誤;對于B,的焦點坐標(biāo)為,B錯誤;對于C,焦點坐標(biāo)為,C錯誤;對于D,的焦點坐標(biāo)為,D正確.故選:D.12、D【解析】先判斷奇偶性排除C,再利用排除B,求導(dǎo)判斷單調(diào)性可排除A.【詳解】因為,所以為偶函數(shù),排除C;因為,排除B;當(dāng)時,,,當(dāng)時,,所以函數(shù)在區(qū)間上單調(diào)遞減,排除A.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、3600【解析】先設(shè)分割大房間為間,小房間為間,收益為元,列出約束條件,再根據(jù)約束條件畫出可行域,設(shè),再利用的幾何意義求最值,只需求出直線過可行域內(nèi)的整數(shù)點時,從而得到值即可【詳解】解:設(shè)裝修大房間間,小房間間,收益為萬元,則,目標(biāo)函數(shù),由,解得畫出可行域,得到目標(biāo)函數(shù)過點時,有最大值,故應(yīng)隔出大房間3間和小房間8間,每天能獲得最大的房租收益最大,且為3600元故答案為:360014、或.【解析】根據(jù)曲線方程得曲線的軌跡是個半圓,數(shù)形結(jié)合分析得兩種情況:(1)直線與半圓相切有一個交點;(2)直線與半圓相交于一個點,綜合兩種情況可得答案.【詳解】由曲線,可得,表示以原點為圓心,半徑為的右半圓,是傾斜角為的直線與曲線有且只有一個公共點有兩種情況:(1)直線與半圓相切,根據(jù),所以,結(jié)合圖像可得;(2)直線與半圓的上半部分相交于一個交點,由圖可知.故答案為:或.【點睛】方法點睛:處理直線與圓位置關(guān)系時,若兩方程已知或圓心到直線的距離易表達,則用幾何法;若方程中含有參數(shù),或圓心到直線的距離的表達較繁瑣,則用代數(shù)法;如果或有限制,需要數(shù)形結(jié)合進行分析.15、【解析】結(jié)合空間向量運算求得.【詳解】,.所以.故答案為:16、12【解析】通過二次展開式就可以得到.【詳解】的展開式中含含項的系數(shù)為故答案為:12三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設(shè)數(shù)列的公差為d,由,利用等差數(shù)列的前n項和公式求解;(2)利用等差數(shù)列的前n項和公式結(jié)合二次函數(shù)的性質(zhì)求解.【小問1詳解】解:設(shè)數(shù)列的公差為d,∵,∴,解得2,∴.【小問2詳解】由(1)知2,∴,,,∴當(dāng)時,取得最小值-16.18、(1);(2)﹒【解析】(1)根據(jù)題意,作出圖像,可得,由此可知M的軌跡C為以O(shè)、A為焦點的橢圓;(2)分為l斜率存在和不存在時討論,斜率存在時,直線方程和橢圓方程聯(lián)立,用韋達定理表示的面積,根據(jù)變量范圍可求面積的最大值﹒【小問1詳解】以O(shè)A中點G坐標(biāo)原點,OA所在直線為x軸建立平面直角坐標(biāo)系,如圖:∴可知,,設(shè)折痕與和分別交于M,N兩點,則MN垂直平分,∴,又∵,∴,∴M的軌跡是以O(shè),A為焦點,4為長軸的橢圓.∴M的軌跡方程C為;【小問2詳解】設(shè),,則的周長為當(dāng)軸時,l的方程為,,,當(dāng)l與x軸不垂直時,設(shè),由得,∵>0,∴,,,令,則,,∵,∴,∴.綜上可知,S的取值范圍是19、(1);(2)確定單價為50百元時,銷售利潤最大.【解析】(1)根據(jù)參考公式和數(shù)據(jù)求出,進而求出線性回歸方程;(2)設(shè)出定價,結(jié)合(1)求出利潤,進而通過二次函數(shù)的性質(zhì)求得答案.【小問1詳解】由題意,,則,,結(jié)合參考數(shù)據(jù)可得,,所以線性回歸方程為.【小問2詳解】設(shè)定價為x百元,利潤為,則,由題意,則(百元)時,最大.故確定單價為50百元時,銷售利潤最大.20、(1)(2)存在,1【解析】(1)由題意建立空間直角坐標(biāo)系,求得平面向量的法向量和相應(yīng)點的坐標(biāo),利用點面距離公式即可求得點面距離(2)假設(shè)滿足題意的點存在且滿足,由題意得到關(guān)于的方程,解方程即可確定滿足題意的點是否存在【小問1詳解】解:如圖所示,取中點,連結(jié),,因為三角形是等腰直角三角形,所以,因為面面,面面面,所以平面,又因為,所以四邊形是矩形,可得,則,建立如圖所示的空間直角坐標(biāo)系,則:據(jù)此可得,設(shè)平面的一個法向量為,則,令可得,從而,又,故求點到平面的距離【小問2詳解】解:假設(shè)存在點,,滿足題意,點在線段上,則,即:,,,,,據(jù)此可得:,,從而,,,,設(shè)與平面所成角所成的角為,則,整理可得:,解得:或(舍去)據(jù)此可知,存在滿足題意的點,點為的中點,即21、(1)(2)【解析】(1)直接法求動點的軌跡方程,設(shè)點,列方程即可.(2)點關(guān)于直線對稱的對稱點問題,可以先求出點到直線的距離最值的兩倍就是的距離,也可以求出點的軌跡方程直接求解的距離.【小問1詳解】設(shè),由題意,得:,化簡得,所以點軌跡方程為【小問2詳解】方法一:設(shè),因為點與點關(guān)于點對稱,則點坐標(biāo)為,因為點在圓,即上運動,所以,所以點的軌跡方程為,所以兩圓的圓心分別為,半徑均為2,則.方法二:由可得:所以點的軌跡是以為圓心,2為半徑的圓軌跡的圓心到直線的距離為:22、(1);(2)6.【解析】(1)本小題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論