版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
浙教版八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷一、壓軸題1.如圖,△ABC是等邊三角形,△ADC與△ABC關(guān)于直線AC對(duì)稱,AE與CD垂直交BC的延長線于點(diǎn)E,∠EAF=45°,且AF與AB在AE的兩側(cè),EF⊥AF.(1)依題意補(bǔ)全圖形.(2)①在AE上找一點(diǎn)P,使點(diǎn)P到點(diǎn)B,點(diǎn)C的距離和最短;②求證:點(diǎn)D到AF,EF的距離相等.2.某校八年級(jí)數(shù)學(xué)興趣小組對(duì)“三角形內(nèi)角或外角平分線的夾角與第三個(gè)內(nèi)角的數(shù)量關(guān)系”進(jìn)行了探究.(1)如圖1,在△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)P,∠A=64°,則∠BPC=;(2)如圖2,△ABC的內(nèi)角∠ACB的平分線與△ABC的外角∠ABD的平分線交于點(diǎn)E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如圖3,∠CBM、∠BCN為△ABC的外角,∠CBM、∠BCN的平分線交于點(diǎn)Q,請(qǐng)你寫出∠BQC與∠A的數(shù)量關(guān)系,并證明.3.直角三角形中,,直線過點(diǎn).(1)當(dāng)時(shí),如圖1,分別過點(diǎn)和作直線于點(diǎn),直線于點(diǎn),與是否全等,并說明理由;(2)當(dāng),時(shí),如圖2,點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,連接,點(diǎn)是上一點(diǎn),點(diǎn)是上一點(diǎn),分別過點(diǎn)作直線于點(diǎn),直線于點(diǎn),點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿路徑運(yùn)動(dòng),終點(diǎn)為,點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿路徑運(yùn)動(dòng),終點(diǎn)為,點(diǎn)同時(shí)開始運(yùn)動(dòng),各自達(dá)到相應(yīng)的終點(diǎn)時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,當(dāng)為等腰直角三角形時(shí),求的值.4.如圖1,在等邊△ABC中,E、D兩點(diǎn)分別在邊AB、BC上,BE=CD,AD、CE相交于點(diǎn)F.(1)求∠AFE的度數(shù);(2)過點(diǎn)A作AH⊥CE于H,求證:2FH+FD=CE;(3)如圖2,延長CE至點(diǎn)P,連接BP,∠BPC=30°,且CF=CP,求的值.(提示:可以過點(diǎn)A作∠KAF=60°,AK交PC于點(diǎn)K,連接KB)5.已知在△ABC中,AB=AC,射線BM、BN在∠ABC內(nèi)部,分別交線段AC于點(diǎn)G、H.(1)如圖1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于點(diǎn)D,分別交BC、BM于點(diǎn)E、F.①求證:∠1=∠2;②如圖2,若BF=2AF,連接CF,求證:BF⊥CF;(2)如圖3,點(diǎn)E為BC上一點(diǎn),AE交BM于點(diǎn)F,連接CF,若∠BFE=∠BAC=2∠CFE,求的值.6.已知和都是等腰三角形,,,.(初步感知)(1)特殊情形:如圖①,若點(diǎn),分別在邊,上,則__________.(填>、<或=)(2)發(fā)現(xiàn)證明:如圖②,將圖①中的繞點(diǎn)旋轉(zhuǎn),當(dāng)點(diǎn)在外部,點(diǎn)在內(nèi)部時(shí),求證:.(深入研究)(3)如圖③,和都是等邊三角形,點(diǎn),,在同一條直線上,則的度數(shù)為__________;線段,之間的數(shù)量關(guān)系為__________.(4)如圖④,和都是等腰直角三角形,,點(diǎn)、、在同一直線上,為中邊上的高,則的度數(shù)為__________;線段,,之間的數(shù)量關(guān)系為__________.(拓展提升)(5)如圖⑤,和都是等腰直角三角形,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),連結(jié)、.當(dāng),時(shí),在旋轉(zhuǎn)過程中,與的面積和的最大值為__________.7.學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對(duì)“兩個(gè)三角形滿足兩邊的其中一邊的對(duì)角對(duì)應(yīng)相等”的情形進(jìn)行研究.(初步思考)我們不妨將問題用符號(hào)語言表示為:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對(duì)∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.(深入探究)第一種情況:當(dāng)∠B是直角時(shí),△ABC≌△DEF.(1)如圖①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)______,可以知道Rt△ABC≌Rt△DEF.第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF.(2)如圖②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角.求證:△ABC≌△DEF.第三種情況:當(dāng)∠B是銳角時(shí),△ABC和△DEF不一定全等.(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角.請(qǐng)你用直尺在圖③中作出△DEF,使△DEF和△ABC不全等,并作簡要說明.8.如圖,若要判定紙帶兩條邊線a,b是否互相平行,我們可以采用將紙條沿AB折疊的方式來進(jìn)行探究.(1)如圖1,展開后,測(cè)得,則可判定a//b,請(qǐng)寫出判定的依據(jù)_________;(2)如圖2,若要使a//b,則與應(yīng)該滿足的關(guān)系是_________;(3)如圖3,紙帶兩條邊線a,b互相平行,折疊后的邊線b與a交于點(diǎn)C,若將紙帶沿(,分別在邊線a,b上)再次折疊,折疊后的邊線b與a交于點(diǎn),AB//,,求出的長.9.如圖,在平面直角坐標(biāo)系中,,,,點(diǎn)、在軸上且關(guān)于軸對(duì)稱.(1)求點(diǎn)的坐標(biāo);(2)動(dòng)點(diǎn)以每秒2個(gè)單位長度的速度從點(diǎn)出發(fā)沿軸正方向向終點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,點(diǎn)到直線的距離的長為,求與的關(guān)系式;(3)在(2)的條件下,當(dāng)點(diǎn)到的距離為時(shí),連接,作的平分線分別交、于點(diǎn)、,求的長.10.閱讀并填空:如圖,是等腰三角形,,是邊延長線上的一點(diǎn),在邊上且聯(lián)接交于,如果,那么,為什么?解:過點(diǎn)作交于所以(兩直線平行,同位角相等)(________)在與中所以,(________)所以(________)因?yàn)椋ㄒ阎┧裕╛_______)所以(等量代換)所以(________)所以11.(1)探索發(fā)現(xiàn):如圖1,已知Rt△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,過點(diǎn)A作AD⊥l,過點(diǎn)B作BE⊥l,垂足分別為D、E.求證:AD=CE,CD=BE.(2)遷移應(yīng)用:如圖2,將一塊等腰直角的三角板MON放在平面直角坐標(biāo)系內(nèi),三角板的一個(gè)銳角的頂點(diǎn)與坐標(biāo)原點(diǎn)O重合,另兩個(gè)頂點(diǎn)均落在第一象限內(nèi),已知點(diǎn)M的坐標(biāo)為(1,3),求點(diǎn)N的坐標(biāo).(3)拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系內(nèi),已知直線y=﹣3x+3與y軸交于點(diǎn)P,與x軸交于點(diǎn)Q,將直線PQ繞P點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)45°后,所得的直線交x軸于點(diǎn)R.求點(diǎn)R的坐標(biāo).12.已知ABC,P是平面內(nèi)任意一點(diǎn)(A、B、C、P中任意三點(diǎn)都不在同一直線上).連接PB、PC,設(shè)∠PBA=s°,∠PCA=t°,∠BPC=x°,∠BAC=y(tǒng)°.(1)如圖,當(dāng)點(diǎn)P在ABC內(nèi)時(shí),①若y=70,s=10,t=20,則x=;②探究s、t、x、y之間的數(shù)量關(guān)系,并證明你得到的結(jié)論.(2)當(dāng)點(diǎn)P在ABC外時(shí),直接寫出s、t、x、y之間所有可能的數(shù)量關(guān)系,并畫出相應(yīng)的圖形.13.如圖1.在△ABC中,∠ACB=90°,AC=BC=10,直線DE經(jīng)過點(diǎn)C,過點(diǎn)A,B分別作AD⊥DE,BE⊥DE,垂足分別為點(diǎn)D和E,AD=8,BE=6.(1)①求證:△ADC≌△CEB;②求DE的長;(2)如圖2,點(diǎn)M以3個(gè)單位長度/秒的速度從點(diǎn)C出發(fā)沿著邊CA運(yùn)動(dòng),到終點(diǎn)A,點(diǎn)N以8個(gè)單位長度/秒的速度從點(diǎn)B出發(fā)沿著線BC—CA運(yùn)動(dòng),到終點(diǎn)A.M,N兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒(t>0),當(dāng)點(diǎn)N到達(dá)終點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),過點(diǎn)M作PM⊥DE于點(diǎn)P,過點(diǎn)N作QN⊥DE于點(diǎn)Q;①當(dāng)點(diǎn)N在線段CA上時(shí),用含有t的代數(shù)式表示線段CN的長度;②當(dāng)t為何值時(shí),點(diǎn)M與點(diǎn)N重合;③當(dāng)△PCM與△QCN全等時(shí),則t=.14.已知:如圖1,直線,EF分別交AB,CD于E,F(xiàn)兩點(diǎn),,的平分線相交于點(diǎn)K.(1)求的度數(shù);(2)如圖2,,的平分線相交于點(diǎn),問與的度數(shù)是否存在某種特定的等量關(guān)系?寫出結(jié)論并證明;(3)在圖2中作,的平分線相交于點(diǎn),作,的平分線相交于點(diǎn),依此類推,作,的平分線相交于點(diǎn),請(qǐng)用含的n式子表示的度數(shù).(直接寫出答案,不必寫解答過程)15.已知,如圖1,直線l2⊥l1,垂足為A,點(diǎn)B在A點(diǎn)下方,點(diǎn)C在射線AM上,點(diǎn)B、C不與點(diǎn)A重合,點(diǎn)D在直線11上,點(diǎn)A的右側(cè),過D作l3⊥l1,點(diǎn)E在直線l3上,點(diǎn)D的下方.(1)l2與l3的位置關(guān)系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點(diǎn)C在射線AM上運(yùn)動(dòng),∠BDC的角平分線交EB的延長線于點(diǎn)N,在點(diǎn)C的運(yùn)動(dòng)過程中,探索∠N:∠BCD的值是否變化,若變化,請(qǐng)說明理由;若不變化,請(qǐng)直接寫出比值.16.如圖,在中,,,點(diǎn)D在邊BC上運(yùn)動(dòng)(點(diǎn)D不與點(diǎn)重合),連接AD,作,DE交邊AC于點(diǎn)E.(1)當(dāng)時(shí),,(2)當(dāng)DC等于多少時(shí),,請(qǐng)說明理由;(3)在點(diǎn)D的運(yùn)動(dòng)過程中,的形狀可以是等腰三角形嗎?若可以,請(qǐng)求出的度數(shù);若不可以,請(qǐng)說明理由.17.小敏與同桌小穎在課下學(xué)習(xí)中遇到這樣一道數(shù)學(xué)題:“如圖(1),在等邊三角形中,點(diǎn)在上,點(diǎn)在的延長線上,且,試確定線段與的大小關(guān)系,并說明理由”.小敏與小穎討論后,進(jìn)行了如下解答:(1)取特殊情況,探索討論:當(dāng)點(diǎn)為的中點(diǎn)時(shí),如圖(2),確定線段與的大小關(guān)系,請(qǐng)你寫出結(jié)論:_____(填“”,“”或“”),并說明理由.(2)特例啟發(fā),解答題目:解:題目中,與的大小關(guān)系是:_____(填“”,“”或“”).理由如下:如圖(3),過點(diǎn)作EF∥BC,交于點(diǎn).(請(qǐng)你將剩余的解答過程完成)(3)拓展結(jié)論,設(shè)計(jì)新題:在等邊三角形中,點(diǎn)在直線上,點(diǎn)在直線上,且,若△的邊長為,,求的長(請(qǐng)你畫出圖形,并直接寫出結(jié)果).18.(1)如圖1,和都是等邊三角形,且,,三點(diǎn)在一條直線上,連接,相交于點(diǎn),求證:.(2)如圖2,在中,若,分別以,和為邊在外部作等邊,等邊,等邊,連接、、恰交于點(diǎn).①求證:;②如圖2,在(2)的條件下,試猜想,,與存在怎樣的數(shù)量關(guān)系,并說明理由.19.如圖1,直角三角形DEF與直角三角形ABC的斜邊在同一直線上,∠EDF=30°,∠ABC=40°,CD平分∠ACB,將△DEF繞點(diǎn)D按逆時(shí)針方向旋轉(zhuǎn),記∠ADF為α(0°<α<180°),在旋轉(zhuǎn)過程中;(1)如圖2,當(dāng)∠α=時(shí),,當(dāng)∠α=時(shí),DE⊥BC;(2)如圖3,當(dāng)頂點(diǎn)C在△DEF內(nèi)部時(shí),邊DF、DE分別交BC、AC的延長線于點(diǎn)M、N,①此時(shí)∠α的度數(shù)范圍是;②∠1與∠2度數(shù)的和是否變化?若不變求出∠1與∠2度數(shù)和;若變化,請(qǐng)說明理由;③若使得∠2≥2∠1,求∠α的度數(shù)范圍.20.探究:如圖①,在△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,若∠B=30°,則∠ACD的度數(shù)是度;拓展:如圖②,∠MCN=90°,射線CP在∠MCN的內(nèi)部,點(diǎn)A、B分別在CM、CN上,分別過點(diǎn)A、B作AD⊥CP、BE⊥CP,垂足分別為D、E,若∠CBE=70°,求∠CAD的度數(shù);應(yīng)用:如圖③,點(diǎn)A、B分別在∠MCN的邊CM、CN上,射線CP在∠MCN的內(nèi)部,點(diǎn)D、E在射線CP上,連接AD、BE,若∠ADP=∠BEP=60°,則∠CAD+∠CBE+∠ACB=度.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、壓軸題1.(1)詳見解析;(2)①詳見解析;②詳見解析.【解析】【分析】(1)本題考查理解題意能力,按照題目所述依次作圖即可.(2)①本題考查線段和最短問題,需要通過垂直平分線的性質(zhì)將所求線段轉(zhuǎn)化為其他等量線段之和,以達(dá)到求解目的.②本題考查垂直平分線的判定以及全等三角形的證明,繼而利用角的平分線性質(zhì)即可得出結(jié)論.【詳解】(1)補(bǔ)全圖形,如圖1所示(2)①如圖2,連接BD,P為BD與AE的交點(diǎn)∵等邊△ACD,AE⊥CD∴PC=PD,PC+PB最短等價(jià)于PB+PD最短故B,D之間直線最短,點(diǎn)P即為所求.②證明:連接DE,DF.如圖3所示∵△ABC,△ADC是等邊三角形∴AC=AD,∠ACB=∠CAD=60°∵AE⊥CD∴∠CAE=∠CAD=30°∴∠CEA=∠ACB﹣∠CAE=30°∴∠CAE=∠CEA∴CA=CE∴CD垂直平分AE∴DA=DE∴∠DAE=∠DEA∵EF⊥AF,∠EAF=45°∴∠FEA=45°∴∠FEA=∠EAF∴FA=FE,∠FAD=∠FED∴△FAD≌△FED(SAS)∴∠AFD=∠EFD∴點(diǎn)D到AF,EF的距離相等.【點(diǎn)睛】本題第一問作圖極為重要,要求對(duì)題意有較深的理解,同時(shí)對(duì)于垂直平分線以及角平分線的定義要清楚,能通過題目文字所述轉(zhuǎn)化為考點(diǎn),信息轉(zhuǎn)化能力需要多做題目加以提升.2.(1)∠BPC=122°;(2)∠BEC=;(3)∠BQC=90°﹣∠A,證明見解析【解析】【分析】(1)根據(jù)三角形的內(nèi)角和化為角平分線的定義;(2)根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,用∠A與∠1表示出∠2,再利用∠E與∠1表示出∠2,于是得到結(jié)論;(3)根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和以及角平分線的定義表示出∠EBC與∠ECB,然后再根據(jù)三角形的內(nèi)角和定理列式整理即可得解.【詳解】解:(1)、分別平分和,,,,,,,,故答案為:;(2)和分別是和的角平分線,,,又是的一外角,,,是的一外角,;(3),,,,,結(jié)論:.【點(diǎn)睛】本題考查了三角形的外角性質(zhì)與內(nèi)角和定理,熟記三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和是解題的關(guān)鍵.3.(1)全等,理由見解析;(2)t=3.5秒或5秒【解析】【分析】(1)根據(jù)垂直的定義得到∠DAC=∠ECB,利用AAS定理證明△ACD≌△CBE;(2)分點(diǎn)F沿C→B路徑運(yùn)動(dòng)和點(diǎn)F沿B→C路徑運(yùn)動(dòng)兩種情況,根據(jù)等腰三角形的定義列出算式,計(jì)算即可;【詳解】解:(1)△ACD與△CBE全等.理由如下:∵AD⊥直線l,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS);(2)由題意得,AM=t,F(xiàn)N=3t,則CM=8-t,由折疊的性質(zhì)可知,CF=CB=6,∴CN=6-3t,點(diǎn)N在BC上時(shí),△CMN為等腰直角三角形,當(dāng)點(diǎn)N沿C→B路徑運(yùn)動(dòng)時(shí),由題意得,8-t=3t-6,解得,t=3.5,當(dāng)點(diǎn)N沿B→C路徑運(yùn)動(dòng)時(shí),由題意得,8-t=18-3t,解得,t=5,綜上所述,當(dāng)t=3.5秒或5秒時(shí),△CMN為等腰直角三角形;【點(diǎn)睛】本題考查的是全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理,靈活運(yùn)用分情況討論思想是解題的關(guān)鍵.4.(1)∠AFE=60°;(2)見解析;(3)【解析】【分析】(1)通過證明得到對(duì)應(yīng)角相等,等量代換推導(dǎo)出;(2)由(1)得到,則在中利用30°所對(duì)的直角邊等于斜邊的一半,等量代換可得;(3)通過在PF上取一點(diǎn)K使得KF=AF,作輔助線證明和全等,利用對(duì)應(yīng)邊相等,等量代換得到比值.(通過將順時(shí)針旋轉(zhuǎn)60°也是一種思路.)【詳解】(1)解:如圖1中.∵為等邊三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在和中,,∴(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)證明:如圖1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一點(diǎn)K使得KF=AF,連接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK為等邊三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在和中,,∴(SAS),∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴,∴,∵∴.【點(diǎn)睛】掌握等邊三角形、直角三角形的性質(zhì),及三角形全等的判定通過一定等量代換為本題的關(guān)鍵.5.(1)①見解析;②見解析;(2)2【解析】【分析】(1)①只要證明∠2+∠BAF=∠1+∠BAF=60°即可解決問題;②只要證明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,連接AK.只要證明△ABK≌CAF,可得S△ABK=S△AFC,再證明AF=FK=BK,可得S△ABK=S△AFK,即可解決問題;【詳解】(1)①證明:如圖1中,∵AB=AC,∠ABC=60°∴△ABC是等邊三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②證明:如圖2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,連接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴.【點(diǎn)睛】本題考查全等三角形的判定和性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的判定和性質(zhì)、直角三角形30度角性質(zhì)等知識(shí),解題的關(guān)鍵是能夠正確添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考?jí)狠S題.6.(1)=;(2)證明見解析;(3)60°,BD=CE;(4)90°,AM+BD=CM;(5)7【解析】【分析】(1)由DE∥BC,得到,結(jié)合AB=AC,得到DB=EC;(2)由旋轉(zhuǎn)得到的結(jié)論判斷出△DAB≌△EAC,得到DB=CE;(3)根據(jù)等邊三角形的性質(zhì)和全等三角形的判定定理證明△DAB≌△EAC,根據(jù)全等三角形的性質(zhì)求出結(jié)論;(4)根據(jù)全等三角形的判定和性質(zhì)和等腰直角三角形的性質(zhì)即可得到結(jié)論;(5)根據(jù)旋轉(zhuǎn)的過程中△ADE的面積始終保持不變,而在旋轉(zhuǎn)的過程中,△ADC的AC始終保持不變,即可.【詳解】[初步感知](1)∵DE∥BC,∴,∵AB=AC,∴DB=EC,故答案為:=,(2)成立.理由:由旋轉(zhuǎn)性質(zhì)可知∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如圖③,設(shè)AB,CD交于O,∵△ABC和△ADE都是等邊三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴∠ADB=∠AEC=135°,BD=CE,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE都是等腰直角三角形,AM為△ADE中DE邊上的高,∴AM=EM=MD,∴AM+BD=CM;故答案為:90°,AM+BD=CM;【拓展提升】(5)如圖,由旋轉(zhuǎn)可知,在旋轉(zhuǎn)的過程中△ADE的面積始終保持不變,△ADE與△ADC面積的和達(dá)到最大,∴△ADC面積最大,∵在旋轉(zhuǎn)的過程中,AC始終保持不變,∴要△ADC面積最大,∴點(diǎn)D到AC的距離最大,∴DA⊥AC,∴△ADE與△ADC面積的和達(dá)到的最大為2+×AC×AD=5+2=7,故答案為7.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了旋轉(zhuǎn)和全等三角形的性質(zhì)和判定,旋轉(zhuǎn)過程中面積變化分析,解本題的關(guān)鍵是三角形全等的判定.7.(1)HL;(2)見解析;(3)如圖②,見解析;△DEF就是所求作的三角形,△DEF和△ABC不全等.【解析】【分析】(1)根據(jù)直角三角形全等的方法“HL”證明;(2)過點(diǎn)C作CG⊥AB交AB的延長線于G,過點(diǎn)F作FH⊥DE交DE的延長線于H,根據(jù)等角的補(bǔ)角相等求出∠CBG=∠FEH,再利用“角角邊”證明△CBG和△FEH全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得CG=FH,再利用“HL”證明Rt△ACG和Rt△DFH全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠A=∠D,然后利用“角角邊”證明△ABC和△DEF全等;(3)以點(diǎn)C為圓心,以AC長為半徑畫弧,與AB相交于點(diǎn)D,E與B重合,F(xiàn)與C重合,得到△DEF與△ABC不全等;(4)根據(jù)三種情況結(jié)論,∠B不小于∠A即可.【詳解】(1)在直角三角形中一條斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等運(yùn)用的是HL.(2)證明:如圖①,分別過點(diǎn)C、F作對(duì)邊AB、DE上的高CG、FH,其中G、H為垂足.∵∠ABC、∠DEF都是鈍角∴G、H分別在AB、DE的延長線上.∵CG⊥AG,F(xiàn)H⊥DH,∴∠CGA=∠FHD=90°.∵∠CBG=180°-∠ABC,∠FEH=∠180°-∠DEF,∠ABC=∠DEF,∴∠CBG=∠FEH.在△BCG和△EFH中,∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF,∴△BCG≌△EFH.∴CG=FH.又∵AC=DF.∴Rt△ACG≌△DFH.∴∠A=∠D.在△ABC和△DEF中,∵∠ABC=∠DEF,∠A=∠D,AC=DF,∴△ABC≌△DEF.(3)如圖②,△DEF就是所求作的三角形,△DEF和△ABC不全等.【點(diǎn)睛】本題是三角形綜合題,主要考查了全等三角形的判定與性質(zhì),應(yīng)用與設(shè)計(jì)作圖,熟練掌握三角形全等的判定方法是解題的關(guān)鍵,閱讀量較大,審題要認(rèn)真仔細(xì).8.(1)內(nèi)錯(cuò)角相等,兩直線平行;(2)∠1+2∠2=180°;(3)4或10【解析】【分析】(1)根據(jù)平行線的判定定理,即可得到答案;(2)由折疊的性質(zhì)得:∠3=∠4,若a∥b,則∠3=∠2,結(jié)合三角形內(nèi)角和定理,即可得到答案;(3)分兩種情況:①當(dāng)B1在B的左側(cè)時(shí),如圖2,當(dāng)B1在B的右側(cè)時(shí),如圖3,分別求出的長,即可得到答案.【詳解】(1)∵,∴a∥b(內(nèi)錯(cuò)角相等,兩直線平行),故答案是:內(nèi)錯(cuò)角相等,兩直線平行;(2)如圖1,由折疊的性質(zhì)得:∠3=∠4,若a∥b,則∠3=∠2,∴∠4=∠2,∵∠2+∠4+∠1=180°,∴∠1+2∠2=180°,∴要使a∥b,則與應(yīng)該滿足的關(guān)系是:∠1+2∠2=180°.故答案是:∠1+2∠2=180°;(3)①當(dāng)B1在B的左側(cè)時(shí),如圖2,∵AB//,a∥b,∴AA1=BB1=3,∴=AC-AA1=7-3=4;②當(dāng)B1在B的右側(cè)時(shí),如圖3,∵AB//,a∥b,∴AA1=BB1=3,∴=AC+AA1=7+3=10.綜上所述:=4或10.【點(diǎn)睛】本題主要考查平行線的判定和性質(zhì)定理,折疊的性質(zhì)以及三角形的內(nèi)角和定理,掌握“平行線間的平行線段長度相等”是解題的關(guān)鍵.9.(1)C(4,0);(2);(3).【解析】【分析】(1)根據(jù)對(duì)稱的性質(zhì)知為等邊三角形,利用直角三角形中30度角的性質(zhì)即可求得答案;(2)利用面積法可求得,再利用坐標(biāo)系中點(diǎn)的特征即可求得答案;(3)利用(2)的結(jié)論求得,利用角平分線的性質(zhì)證得,求得,利用面積法求得,再利用直角三角形中30度角的性質(zhì)即可求得答案.【詳解】(1)∵點(diǎn)、關(guān)于軸對(duì)稱,∴,∴,∵,∴為等邊三角形,∴,∴,∴點(diǎn)C的坐標(biāo)為:;(2)連接,∵,∴,∵,∴,∵,∴,∵,∴,即:;(3)∵點(diǎn)到的距離為,∴,∴,∴,延長交于點(diǎn),過點(diǎn)作軸于點(diǎn),連接、,∵為的角平分線,為等邊三角形,∴,,∵,,∴,∴,設(shè),在中,,∴,∵,∴,∴,∴,∴,∵,,∴,∵,∴,在中,,,∴,∴,,∴,∴.【點(diǎn)睛】本題是三角形綜合題,涉及的知識(shí)有:含30度直角三角形的性質(zhì),全等三角形的判定與性質(zhì),外角性質(zhì),角平分線的性質(zhì),等邊三角形的判定和性質(zhì),坐標(biāo)與圖形性質(zhì),熟練掌握性質(zhì)及定理、靈活運(yùn)用面積法求線段的長是解本題的關(guān)鍵.10.見解析【解析】【分析】先根據(jù)平行線的性質(zhì),得到角的關(guān)系,然后證明,寫出證明過程和依據(jù)即可.【詳解】解:過點(diǎn)作交于,∴(兩直線平行,同位角相等),∴(兩直線平行,內(nèi)錯(cuò)角相等),在與中,∴,()∴(全等三角形對(duì)應(yīng)邊相等)∵(已知)∴(等邊對(duì)等角)∴(等量代換)∴(等角對(duì)等邊)∴;【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì),平行線的性質(zhì),解題的關(guān)鍵是由平行線的性質(zhì)正確找到證明三角形全等的條件,從而進(jìn)行證明.11.(1)見解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判斷出∠ACB=∠ADC,再判斷出∠CAD=∠BCE,進(jìn)而判斷出△ACD≌△CBE,即可得出結(jié)論;(2)先判斷出MF=NG,OF=MG,進(jìn)而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出結(jié)論;(3)先求出OP=3,由y=0得x=1,進(jìn)而得出Q(1,0),OQ=1,再判斷出PQ=SQ,即可判斷出OH=4,SH=0Q=1,進(jìn)而求出直線PR的解析式,即可得出結(jié)論.【詳解】證明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如圖2,過點(diǎn)M作MF⊥y軸,垂足為F,過點(diǎn)N作NG⊥MF,交FM的延長線于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(jìn)(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴點(diǎn)N的坐標(biāo)為(4,2),(3)如圖3,過點(diǎn)Q作QS⊥PQ,交PR于S,過點(diǎn)S作SH⊥x軸于H,對(duì)于直線y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),設(shè)直線PR為y=kx+b,則,解得∴直線PR為y=﹣x+3由y=0得,x=6∴R(6,0).【點(diǎn)睛】本題是一次函數(shù)綜合題,主要考查了待定系數(shù)法,全等三角形的判定和性質(zhì),構(gòu)造出全等三角形是解本題的關(guān)鍵.12.(1)①100;②x=y+s+t;(2)見詳解.【解析】【分析】(1)①利用三角形的內(nèi)角和定理即可解決問題;②結(jié)論:x=y+s+t.利用三角形內(nèi)角和定理即可證明;(2)分6種情形分別求解即可解決問題.【詳解】解:(1)①∵∠BAC=70°,∴∠ABC+∠ACB=110°,∵∠PBA=10°,∠PCA=20°,∴∠PBC+∠PCB=80°,∴∠BPC=100°,∴x=100,故答案為:100.②結(jié)論:x=y+s+t.理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC=180°,∴∠A+∠PBA+∠PCA=∠BPC,∴x=y+s+t.(2)s、t、x、y之間所有可能的數(shù)量關(guān)系:如圖1:s+x=t+y;如圖2:s+y=t+x;如圖3:y=x+s+t;如圖4:x+y+s+t=360°;如圖5:t=s+x+y;如圖6:s=t+x+y;【點(diǎn)睛】本題考查三角形的內(nèi)角和定理,三角形的外角的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類討論的思想思考問題.13.(1)①證明見解析;②DE=14;(2)①8t-10;②t=2;③t=【解析】【分析】(1)①先證明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性質(zhì)得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①當(dāng)點(diǎn)N在線段CA上時(shí),根據(jù)CN=CN?BC即可得出答案;②點(diǎn)M與點(diǎn)N重合時(shí),CM=CN,即3t=8t?10,解得t=2即可;③分兩種情況:當(dāng)點(diǎn)N在線段BC上時(shí),△PCM≌△QNC,則CM=CN,得3t=10?8t,解得t=1011;當(dāng)點(diǎn)N在線段CA上時(shí),△PCM≌△QCN,則3t=8t?10,解得t=2;即可得出答案.【詳解】(1)①證明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①當(dāng)點(diǎn)N在線段CA上時(shí),如圖3所示:CN=CN?BC=8t?10;②點(diǎn)M與點(diǎn)N重合時(shí),CM=CN,即3t=8t?10,解得:t=2,∴當(dāng)t為2秒時(shí),點(diǎn)M與點(diǎn)N重合;③分兩種情況:當(dāng)點(diǎn)N在線段BC上時(shí),△PCM≌△QNC,∴CM=CN,∴3t=10?8t,解得:t=;當(dāng)點(diǎn)N在線段CA上時(shí),△PCM≌△QCN,點(diǎn)M與N重合,CM=CN,則3t=8t?10,解得:t=2;綜上所述,當(dāng)△PCM與△QCN全等時(shí),則t等于s或2s,故答案為:s或2s.【點(diǎn)睛】本題是三角形綜合題目,考查了全等三角形的判定與性質(zhì)、等腰直角三角形的性質(zhì)、直角三角形的性質(zhì)、分類討論等知識(shí);本題綜合性強(qiáng),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.14.(1);(2),證明見解析;(3)【解析】【分析】(1)過作KG∥AB,交于,證出∥KG,得到,,根據(jù)角平分線的性質(zhì)及平行線的性質(zhì)得到,即可得到答案;(2)根據(jù)角平分線的性質(zhì)得到,,根據(jù)求出,根據(jù)求出答案;(3)根據(jù)(2)得到規(guī)律解答即可.【詳解】(1)過作KG∥AB,交于,∵,∴∥KG,,,,分別為與的平分線,,,∵,,,,則;(2),理由為:,的平分線相交于點(diǎn),,,,即,,,,;(3)由(2)知;同理可得=,∴.【點(diǎn)睛】此題考查平行線的性質(zhì):兩直線平行,內(nèi)錯(cuò)角相等;平行公理的推論:平行于同一直線的兩直線平行;角平分線的性質(zhì);(3)是難點(diǎn),注意總結(jié)前兩問的做題思路得到規(guī)律進(jìn)行解答.15.(1)互相平行;(2)35,20;(3)見解析;(4)不變,【解析】【分析】(1)根據(jù)平行線的判定定理即可得到結(jié)論;(2)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(3)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(4)根據(jù)角平分線的定義,平行線的性質(zhì),三角形外角的性質(zhì)即可得到結(jié)論.【詳解】解:(1)直線l2⊥l1,l3⊥l1,∴l(xiāng)2∥l3,即l2與l3的位置關(guān)系是互相平行,故答案為:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案為:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不會(huì)變化,等于;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=.【點(diǎn)睛】本題考查了三角形的綜合題,三角形的內(nèi)角和定理,三角形外角的性質(zhì),平行線的判定和性質(zhì),角平分線的定義,正確的識(shí)別圖形進(jìn)行推理是解題的關(guān)鍵.16.(1)30,100;(2),見解析;(3)可以,或【解析】【分析】(1)根據(jù)平角的定義,可求出∠EDC的度數(shù),根據(jù)三角形內(nèi)和定理,即可求出∠DEC;(2)當(dāng)AB=DC時(shí),利用AAS可證明ΔABD?ΔDCE,即可得出AB=DC=3;(3)假設(shè)ΔADE是等腰三角形,分為三種情況討論:①當(dāng)DA=DE時(shí),求出∠DAE=∠DEA=70°,求出∠BAC,根據(jù)三角形的內(nèi)角和定理求出∠BAD,根據(jù)三角形的內(nèi)角和定理求出∠BDA即可;②當(dāng)AD=AE時(shí),∠ADE=∠AED=40°,根據(jù)∠AED>∠C,得出此時(shí)不符合;③當(dāng)EA=ED時(shí),求出∠DAC,求出∠BAD,根據(jù)三角形的內(nèi)角和定理求出∠ADB.【詳解】(1)在△BAD中,∵∠B=50°,∠BDA=100°,∴,.故答案為,.(2)當(dāng)時(shí),,理由如下:∵,∴∵,∴∵∴在和中∴(3)可以,理由如下:∵,∴分三種情況討論:①當(dāng)時(shí),∵,∴∴∵∴②當(dāng)時(shí),∵∴又∵∴∴點(diǎn)D與點(diǎn)B重合,不合題意.③當(dāng)時(shí),∴∵∴綜上所述,當(dāng)?shù)亩葦?shù)為或時(shí),是等腰三角形.【點(diǎn)睛】本題考查的是等腰三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、三角形外角的性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理、靈活運(yùn)用分情況討論思想是解題的關(guān)鍵.17.(1),理由詳見解析;(2),理由詳見解析;(3)3或1【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì)、三線合一的性質(zhì)證明即可;(2)根據(jù)等邊三角形的性質(zhì),證明△≌△即可;(3)注意區(qū)分當(dāng)點(diǎn)在的延長線上時(shí)和當(dāng)點(diǎn)在的延長線上時(shí)兩種情況,不要遺漏.【詳解】解:(1),理由如下:,∵△是等邊三角形,,點(diǎn)為的中點(diǎn),,,,,,;故答案為:;(2),理由如下:如圖3:∵△為等邊三角形,且EF∥BC,,,;;,,,在△與△中,,∴△≌△(AAS),,∴△為等邊三角形,,.(3)①如圖4,當(dāng)點(diǎn)在的延長線上時(shí),過點(diǎn)作EF∥BC,交的延長線于點(diǎn):則,;,;∵△為等邊三角形,,,,;而,,;在△和△中,,∴△≌△(AAS),;∵△為等邊三角形,,,;②如圖5,當(dāng)點(diǎn)在的延長線上時(shí),過點(diǎn)作EF∥BC,交的延長線于點(diǎn):類似上述解法,同理可證:,,.【點(diǎn)睛】本題考查等邊三角形的性質(zhì)、全等三角形的判定和性質(zhì).熟練掌握等邊三角形的性質(zhì),構(gòu)造合適的全等三角形是解題的關(guān)鍵.18.(1)詳見解析;(2)①詳見解析;②,理由詳見解析【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì)得出BC=AC,CE=CD,∠ACB=∠DCE=60°,進(jìn)而得出∠BCE=∠ACD,判斷出(SAS),即可得出結(jié)論;(2)①同(1)的方法判斷出(SAS),(SAS),即可得出結(jié)論;②先判斷出∠APB=60°,∠APC=60°,在PE上取一點(diǎn)M,使PM=PC,證明是等邊三角形,進(jìn)而判斷出(SAS),即可得出結(jié)論.【詳解】(1)證明:∵和都是等邊三角形,∴BC=AC,CE=CD,∠ACB=∠DCE=60°,∴∠ABC+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,∴(SAS),∴BE=AD;(2)①證明:∵和是等邊三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,∴(SAS),∴AD=BE,同理:(SAS),∴AD=CF,即AD=BE=CF;②解:結(jié)論:PB+PC+PD=BE,理由:如圖2,AD與BC的交點(diǎn)記作點(diǎn)Q,則∠AQC=∠BQP,由①知,,∴∠CAD=∠CBE,在中,∠CAD+∠AQC=180°-∠ACB=120°,∴∠CBE+∠BQP=120°,在中,∠APB=180°-(∠CBE+∠BQP)=60°,∴∠DPE=60°,同理:∠APC=60°,∠CPD=120°,在PE上取一點(diǎn)M,使PM=PC,∴是等邊三角形,∴,∠PCM=∠CMP=60°,∴∠CME=120
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 德州黑陶品牌推廣調(diào)研
- 單位辦公室2025年工作要點(diǎn)
- 護(hù)肝藥品知識(shí)培訓(xùn)課件
- 對(duì)蝦生物知識(shí)培訓(xùn)課件
- 急診科sbar交班品管圈
- 我的大學(xué)生活介紹
- Unit 7Happy birthday!Section B( 1a-1d)說課稿 2024-2025學(xué)年人教版(2024)七年級(jí)英語上冊(cè)
- 新疆烏魯木齊市第61中學(xué) 2024-2025學(xué)年 高二上學(xué)期期末考試 生物試題 (含答案)
- 二零二五年度建筑行業(yè)綜合保障保險(xiǎn)協(xié)議3篇
- 2025年今夜一起跨年
- 梁平法制圖規(guī)則及鋼筋翻樣講解
- 乙肝 丙肝培訓(xùn)課件
- 2024屆湖北省武漢實(shí)驗(yàn)外國語學(xué)校數(shù)學(xué)七上期末統(tǒng)考模擬試題含解析
- 基于深度學(xué)習(xí)的網(wǎng)絡(luò)釣魚郵件識(shí)別技術(shù)研究
- 融資成本視角下的船舶融資租賃模式研究
- 感冒中醫(yī)理論知識(shí)課件
- 2023年希望杯數(shù)學(xué)培訓(xùn)100題-六年級(jí)(含答案)
- 一年級(jí)科學(xué)人教版總結(jié)回顧2
- 個(gè)人住房貸款提前還款月供及節(jié)省利息EXCEL計(jì)算
- 第五單元《圓》教材解析-人教版數(shù)學(xué)六年級(jí)上冊(cè)
- 患者突發(fā)昏迷應(yīng)急預(yù)案演練腳本-
評(píng)論
0/150
提交評(píng)論