![山西省2023-2024學年高二數(shù)學第一學期期末檢測試題含解析_第1頁](http://file4.renrendoc.com/view/f0e9cae43c325227b960f7e9a5de1237/f0e9cae43c325227b960f7e9a5de12371.gif)
![山西省2023-2024學年高二數(shù)學第一學期期末檢測試題含解析_第2頁](http://file4.renrendoc.com/view/f0e9cae43c325227b960f7e9a5de1237/f0e9cae43c325227b960f7e9a5de12372.gif)
![山西省2023-2024學年高二數(shù)學第一學期期末檢測試題含解析_第3頁](http://file4.renrendoc.com/view/f0e9cae43c325227b960f7e9a5de1237/f0e9cae43c325227b960f7e9a5de12373.gif)
![山西省2023-2024學年高二數(shù)學第一學期期末檢測試題含解析_第4頁](http://file4.renrendoc.com/view/f0e9cae43c325227b960f7e9a5de1237/f0e9cae43c325227b960f7e9a5de12374.gif)
![山西省2023-2024學年高二數(shù)學第一學期期末檢測試題含解析_第5頁](http://file4.renrendoc.com/view/f0e9cae43c325227b960f7e9a5de1237/f0e9cae43c325227b960f7e9a5de12375.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
山西省2023-2024學年高二數(shù)學第一學期期末檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列的通項公式為,則()A.12 B.14C.16 D.182.阿基米德是古希臘著名的數(shù)學家、物理學家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積,已知在平面直角坐標系中,橢圓的面積為,兩焦點與短軸的一個端點構(gòu)成等邊三角形,則橢圓的標準方程是()A. B.C. D.3.已知直線與平行,則系數(shù)()A. B.C. D.4.直線與圓相切,則實數(shù)等于()A.或 B.或C.3或5 D.5或35.①“若,則互為相反數(shù)”的逆命題;②“若,則”的逆否命題;③“若,則”的否命題.其中真命題的個數(shù)為()A.0 B.1C.2 D.36.已知拋物線的焦點為,點為拋物線上一點,點,則的最小值為()A. B.2C. D.37.已知函數(shù)的圖象如圖所示,則其導函數(shù)的圖象大致形狀為()A. B.C. D.8.設正方體的棱長為,則點到平面的距離是()A. B.C. D.9.已知直線方程為,則其傾斜角為()A.30° B.60°C.120° D.150°10.已知是邊長為6的等邊所在平面外一點,,當三棱錐的體積最大時,三棱錐外接球的表面積為()A. B.C. D.11.在正三棱錐S-ABC中,AB=4,D、E分別是SA、AB中點,且DE⊥CD,則三棱錐S-ABC外接球的體積為()A.π B.πC.π D.π12.“,”的否定是A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.曲線在處的切線與坐標軸圍成的三角形面積為___________.14.已知函數(shù)滿足:①是奇函數(shù);②當時,.寫出一個滿足條件的函數(shù)________15.九連環(huán)是中國的一種古老智力游對,它用九個圓環(huán)相連成串,環(huán)環(huán)相扣,以解開為勝,趣味無窮.中國的末代皇帝溥儀(1906-1967)也曾有一個精美的由九個翡翠繯相連的銀制的九連環(huán)(如圖).現(xiàn)假設有個圓環(huán),用表示按照某種規(guī)則解下個圓環(huán)所需的銀和翠玉制九連環(huán)最少移動次數(shù),且數(shù)列滿足,,則___________.16.過點的直線與拋物線相交于,兩點,,則直線的方程為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知三角形內(nèi)角所對的邊分別為,且C為鈍角.(1)求cosA;(2)若,,求三角形的面積.18.(12分)如圖,在正四棱錐中,為底面中心,,為中點,(1)求證:平面;(2)求:(?。┲本€到平面的距離;(ⅱ)求直線與平面所成角的正弦值19.(12分)已知直線l過定點(1)若直線l與直線垂直,求直線l的方程;(2)若直線l在兩坐標軸上的截距相等,求直線l的方程20.(12分)已知橢圓的離心率為,右焦點F到上頂點的距離為.(1)求橢圓的方程;(2)是否存在過點F且與x軸不垂直的直線與橢圓交于A、B兩點,使得點C()在線段AB的中垂線上?若存在,求出直線l:若不存在,說明理曲.21.(12分)在中,a,b,c分別是內(nèi)角A,B,C的對邊,滿足.(1)求A;(2)若,求面積的最大值.22.(10分)已知函數(shù).(1)當時,證明:函數(shù)圖象恒在函數(shù)的圖象的下方;(2)討論方程的根的個數(shù).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用給定的通項公式直接計算即得.【詳解】因數(shù)列的通項公式為,則有,所以.故選:D2、A【解析】由橢圓的面積為和兩焦點與短軸的一個端點構(gòu)成等邊三角形,得到求解.【詳解】由題意得,解得,所以橢圓的標準方程是.故選:A3、B【解析】由直線的平行關(guān)系可得,解之可得【詳解】解:直線與直線平行,,解得故選:4、C【解析】先求出圓的圓心和半徑,再利用圓心到直線的距離等于半徑列方程可求得結(jié)果【詳解】由,得,則圓心為,半徑為2,因為直線與圓相切,所以,得,解得或,故選:C5、B【解析】寫出逆命題判斷①;寫出逆否命題判斷②;寫出否命題判斷③.【詳解】①:“若,則互為相反數(shù)”的逆命題為:“若互為相反數(shù),則”,是真命題;②:“若,則”的逆否命題為:“若,則”.因為當時,有,但不成立.故“若,則”是假命題.③:“若,則”的否命題為:“若,則”.因為當時,有,但是,即不成立.故“若,則”是假命題..故選:B6、D【解析】求出拋物線C的準線l的方程,過A作l的垂線段,結(jié)合幾何意義及拋物線定義即可得解.【詳解】拋物線的準線l:,顯然點A在拋物線C內(nèi),過A作AM⊥l于M,交拋物線C于P,如圖,在拋物線C上任取不同于點P的點,過作于點N,連PF,AN,,由拋物線定義知,,于是得,即點P是過A作準線l的垂線與拋物線C的交點時,取最小值,所以的最小值為3.故選:D7、A【解析】利用f(x)先單調(diào)遞增的速度由快到慢,再由慢到快,結(jié)合導數(shù)的幾何意義判斷即可.【詳解】由f(x)的圖象可知,函數(shù)f(x)先單調(diào)遞增的速度由快到慢,再由慢到快,由導數(shù)的幾何意義可知,先減后增,且恒大于0,故符合題意的只有選項A.故選:A.8、D【解析】建立空間直角坐標系,根據(jù)空間向量所學點到面的距離公式求解即可.【詳解】建立如下圖所示空間直角坐標系,以為坐標原點,所在直線為軸,所在直線為軸,所在直線為軸.因為正方體的邊長為4,所以,,,,,所以,,,設平面的法向量,所以,,即,設,所以,,即,設點到平面的距離為,所以,故選:D.9、D【解析】由直線方程可得斜率,根據(jù)斜率與傾斜角的關(guān)系即可求傾斜角大小.【詳解】由題設,直線斜率,若直線的傾斜角為,則,∵,∴.故選:D10、C【解析】由題意分析可得,當時三棱錐的體積最大,然后作圖,將三棱錐還原成正三棱柱,按照正三棱柱外接球半徑的計算方法來計算,即可計算出球半徑,從而完成求解.【詳解】由題意可知,當三棱錐的體積最大時是時,為正三角形,如圖所示,將三棱錐補成正三棱柱,該正三棱柱的外接球就是三棱錐的外接球,而正三棱柱的外接球球心落在上下底面外接圓圓心連線的中點上,設外接圓半徑為,三棱錐外接球半徑為,由正弦定理可得:,所以,,所以三棱錐外接球的表面積為.故選:C.11、C【解析】取中點,連接,證明平面,得證,然后證明平面,得兩兩垂直,以為棱把三棱錐補成一個正方體,正方體的對角線是其外接球的直徑,而正方體的外接球也是正三棱錐的外接球,由此計算可得【詳解】取中點,連接,則,,,平面,所以平面,又平面,所以,D、E分別是SA、AB的中點,則,又,所以,,平面,所以平面,而平面,所以,,是正三棱錐,因此,因此可以為棱把三棱錐補成一個正方體,正方體的對角線是其外接球的直徑,而正方體的外接球也是正三棱錐的外接球,由,得,所以所求外接球直徑為,半徑為,球體積為故選:C12、D【解析】通過命題的否定的形式進行判斷【詳解】因為全稱命題的否定是特稱命題,故“,”的否定是“,”.故選D.【點睛】本題考查全稱命題的否定,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求導數(shù),得出切線斜率,寫出切線方程,然后可求三角形的面積.【詳解】,當時,,所以切線方程為,即;令可得,令可得;所以切線與坐標軸圍成的三角形面積為.故答案為:.14、(答案不唯一)【解析】利用函數(shù)的奇偶性及其單調(diào)性寫出函數(shù)解析式即可.【詳解】結(jié)合冪函數(shù)的性質(zhì)可知是奇函數(shù),當時,,則符合上述兩個條件,故答案為:(答案不唯一).15、684【解析】利用累加法可求得的值.【詳解】當且時,,所以,.故答案為:.16、##【解析】根據(jù)拋物線方程可得焦點坐標,進而點P為拋物線的焦點,設,利用拋物線的定義可得,有軸,即可得出結(jié)果.【詳解】由題意知,拋物線的焦點坐標,又,所以點P為拋物線的焦點,設,由,由拋物線的定義得,解得,所以AB垂直與x軸,所以直線AB的方程為:.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由正弦定理邊化角,可求得角的正弦,由同角關(guān)系結(jié)合條件可得答案.(2)由(1),由余弦定理,求出邊的長,進一步求得面積【小問1詳解】因為,由正弦定理得因為,所以.因為角為鈍角,所以角為銳角,所以小問2詳解】由(1),由余弦定理,得,所以,解得或,不合題意舍去,故的面積為=18、(1)證明見解析;(2)(i);(ii).【解析】(1)連接,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可證得結(jié)論成立;(2)(i)利用空間向量法可求得直線到平面的距離;(ii)利用空間向量法可求得直線與平面所成角的正弦值.【小問1詳解】證明:連接,則為的中點,且,在正四棱錐中,平面,以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示空間直角坐標系,則、、、、、、、,,設平面的法向量為,,,則,取,則,因為,則,又因為平面,所以,平面.【小問2詳解】解:(i),所以,直線到平面的距離為.(ii),則,因此,直線與平面所成角的正弦值為.19、(1)(2)或【解析】(1)求出直線的斜率可得l的斜率,再借助直線點斜式方程即可得解.(2)按直線l是否過原點分類討論計算作答.【小問1詳解】直線的斜率為,于是得直線l的斜率,則,即,所以直線l的方程是:.【小問2詳解】因直線l在兩坐標軸上的截距相等,則當直線l過原點時,直線l的方程為:,即,當直線l不過原點時,設其方程為:,則有,解得,此時,直線l的方程為:,所以直線l的方程為:或.20、(1)(2)存在,【解析】(1)由題意可得,,求得的值即可求解;(2)由(1)得,假設存在滿足條件的直線:,代入橢圓方程消去可得、,由中點坐標公式可得中點的坐標,由求得的值即可求解.小問1詳解】由題意可得,,,解得,,所以橢圓的方程為【小問2詳解】由(1)得,假設存在滿足條件的直線:,代入橢圓方程整理可得,設,,則,,可得,則線段的中點坐標為,所以,則,解得:,所以存在直線,且直線的方程為21、(1)(2)【解析】(1)由正弦定理得,再由范圍可得答案;(2)由余弦定理和基本不等式可得,再由面積公式可得答案.【小問1詳解】∵,由正弦定理得,又,所以,又,則;【小問2詳解】由余弦定理得,即,所以,當且僅當,取“=”,所以面積的最大值為22、(1)證明見解析(2)答案見解析【解析】(1)構(gòu)造函數(shù),利用導數(shù)判斷單調(diào)性,并求出函數(shù)的最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- LY/T 3412-2024細表面人造板
- 統(tǒng)編版八年級歷史上冊《第6課 戊戌變法》聽課評課記錄
- 湘教版數(shù)學九年級上冊4.4《解直角三角形的應用》聽評課記錄2
- 瓦匠施工安全責任協(xié)議書(2篇)
- 生活技能培訓服務合同(2篇)
- 粵人版地理七年級上冊《第三節(jié) 世界的主要氣候類型》聽課評課記錄1
- 北京課改版歷史七年級下冊第9課《經(jīng)濟重心的南移》聽課評課記錄
- 五年級下冊數(shù)學聽評課記錄《 -2、5倍數(shù) 》人教版
- 人教版數(shù)學七年級上冊4.4《課題學習 設計制作長方體形狀的包裝紙盒》聽評課記錄2
- 人教版七年級數(shù)學下冊 聽評課記錄 9.2 第1課時《一元一次不等式》
- 室內(nèi)裝飾拆除專項施工方案
- 老年癡呆癥患者生活陪護協(xié)議
- 2024年-急診氣道管理共識課件
- 鋼筋工程精細化管理指南(中建內(nèi)部)
- 小學語文中段整本書閱讀的指導策略研究 中期報告
- 2024年山西省高考考前適應性測試 (一模)英語試卷(含答案詳解)
- 浙教版2023-2024學年數(shù)學八年級上冊期末復習卷(含答案)
- 2024年中國鐵路投資集團有限公司招聘筆試參考題庫含答案解析
- 運動訓練與康復治療培訓資料
- 經(jīng)營開發(fā)部工作目標責任書
- 小班繪本教學《藏在哪里了》課件
評論
0/150
提交評論