陜西省西安市第二十五中學(xué)2024屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第1頁
陜西省西安市第二十五中學(xué)2024屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第2頁
陜西省西安市第二十五中學(xué)2024屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第3頁
陜西省西安市第二十五中學(xué)2024屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第4頁
陜西省西安市第二十五中學(xué)2024屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

陜西省西安市第二十五中學(xué)2024屆數(shù)學(xué)高二上期末監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,用隨機(jī)模擬方法近似估計(jì)在邊長為e(e為自然對數(shù)的底數(shù))的正方形中陰影部分的面積,先產(chǎn)生兩組區(qū)間上的隨機(jī)數(shù)和,因此得到1000個(gè)點(diǎn)對,再統(tǒng)計(jì)出落在該陰影部分內(nèi)的點(diǎn)數(shù)為260個(gè),則此陰影部分的面積約為()A.0.70 B.1.04C.1.86 D.1.922.已知數(shù)列的前項(xiàng)和為,當(dāng)時(shí),()A.11 B.20C.33 D.353.過點(diǎn)且與雙曲線有相同漸近線的雙曲線方程為()A B.C. D.4.已知集合,,則()A. B.C. D.5.拋物線有如下光學(xué)性質(zhì):平行于拋物線對稱軸的入射光線經(jīng)拋物線反射后必過拋物線的焦點(diǎn).已知拋物線的焦點(diǎn)為F,一條平行于y軸的光線從點(diǎn)射出,經(jīng)過拋物線上的點(diǎn)A反射后,再經(jīng)拋物線上的另一點(diǎn)B射出,則經(jīng)點(diǎn)B反射后的反射光線必過點(diǎn)()A. B.C. D.6.已知直線與x軸,y軸分別交于A,B兩點(diǎn),且直線l與圓相切,則的面積的最小值為()A.1 B.2C.3 D.47.若直線與直線垂直,則a的值為()A.2 B.1C. D.8.已知等比數(shù)列滿足,則q=()A.1 B.-1C.3 D.-39.已知雙曲線C:的右焦點(diǎn)為,一條漸近線被圓截得的弦長為2b,則雙曲線C的離心率為()A. B.C.2 D.10.等比數(shù)列的各項(xiàng)均為正數(shù),已知向量,,且,則A.12 B.10C.5 D.11.如圖所示,某空間幾何體的三視圖是3個(gè)全等的等腰直角三角形,且直角邊長為2,則該空間幾何體的體積為()A. B.C. D.12.已知命題是真命題,那么的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知某次數(shù)學(xué)期末試卷中有8道4選1的單選題14.函數(shù)的單調(diào)遞減區(qū)間是____15.某人實(shí)施一項(xiàng)投資計(jì)劃,從2021年起,每年1月1日,把上一年工資的10%投資某個(gè)項(xiàng)目.已知2020年他的工資是10萬元,預(yù)計(jì)未來十年每年工資都會逐年增加1萬元;若投資年收益是10%,一年結(jié)算一次,當(dāng)年的投資收益自動轉(zhuǎn)入下一年的投資本金,若2031年1月1日結(jié)束投資計(jì)劃,則他可以一次性取出的所有投資以及收益應(yīng)有__________萬元.(參考數(shù)據(jù):,,)16.已知圓的半徑為3,,為該圓的兩條切線,為切點(diǎn),則的最小值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,橢圓C1:的左、右焦點(diǎn)分別為,且橢圓C1與拋物線C2:y2=2px(p>0)在第一象限的交點(diǎn)為Q,已知.(1)求的面積(2)求拋物線C2的標(biāo)準(zhǔn)方程.18.(12分)已知命題p:函數(shù)有零點(diǎn);命題,(1)若命題p,q均為真命題,求實(shí)數(shù)a的取值范圍;(2)若為真命題,為假命題,求實(shí)數(shù)a的取值范圍19.(12分)已知等差數(shù)列滿足:,(1)求數(shù)列的通項(xiàng)公式,以及前n項(xiàng)和公式;(2)若,求數(shù)列的前n項(xiàng)和20.(12分)設(shè)函數(shù)(1)若,求的單調(diào)區(qū)間和極值;(2)在(1)的條件下,證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn);(3)若存在,使得,求的取值范圍21.(12分)已知函數(shù).若函數(shù)有兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.22.(10分)如圖,已知正方體的棱長為2,,,分別為,,的中點(diǎn)(1)求直線與直線所成角余弦值;(2)求點(diǎn)到平面的距離

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)幾何概型的概率公式即可直接求出答案.【詳解】易知,根據(jù)幾何概型的概率公式,得,所以.故選:D.2、B【解析】由數(shù)列的性質(zhì)可得,計(jì)算可得到答案.【詳解】由題意,.故答案為B.【點(diǎn)睛】本題考查了數(shù)列的前n項(xiàng)和的性質(zhì),屬于基礎(chǔ)題.3、C【解析】設(shè)與雙曲線有相同漸近線的雙曲線方程為,代入點(diǎn)的坐標(biāo),求出的值,即可的解.【詳解】設(shè)與雙曲線有相同漸近線的雙曲線方程為,代入點(diǎn),得,解得,所以所求雙曲線方程為,即故選:C.4、B【解析】根據(jù)根式、分式的性質(zhì)求定義域可得集合A,解一元二次不等式求集合B,再由集合的交運(yùn)算求.【詳解】∵,,∴故選:B5、D【解析】求出、坐標(biāo)可得直線的方程,與拋物線方程聯(lián)立求出,根據(jù)選項(xiàng)可得答案,【詳解】把代入得,所以,所以直線的方程為即,與拋物線方程聯(lián)立解得,所以,因?yàn)榉瓷涔饩€平行于y軸,根據(jù)選項(xiàng)可得D正確,故選:D6、A【解析】由直線與圓相切可得,再利用基本不等式即求.【詳解】由已知可得,,因?yàn)橹本€與圓相切,所以,即,因?yàn)椋?dāng)且僅當(dāng)時(shí)取等號,所以,,所以面積的最小值為1.故選:A7、A【解析】根據(jù)兩條直線垂直的條件列方程,解方程求得的值.【詳解】由于直線與直線垂直,所以,解得.故選:A8、C【解析】根據(jù)已知條件,利用等比數(shù)列的基本量列出方程,即可求得結(jié)果.【詳解】因?yàn)?,故可得;解?故選:C.9、A【解析】求出圓心到漸近線的距離,根據(jù)弦長建立關(guān)系即可求解.【詳解】雙曲線的漸近線方程為,即,則點(diǎn)到漸近線的距離為,因?yàn)橄议L為,圓半徑為,所以,即,因?yàn)?,所以,則雙曲線的離心率為.故選:A.10、C【解析】利用數(shù)量積運(yùn)算性質(zhì)、等比數(shù)列的性質(zhì)及其對數(shù)運(yùn)算性質(zhì)即可得出【詳解】向量=(,),=(,),且?=4,∴+=4,由等比數(shù)列的性質(zhì)可得:=……===2,則log2(?)=故選C【點(diǎn)睛】本題考查數(shù)量積運(yùn)算性質(zhì)、等比數(shù)列的性質(zhì)及其對數(shù)運(yùn)算性質(zhì),考查推理能力與計(jì)算能力,屬于中檔題11、A【解析】在該空間幾何體的直觀圖中去求其體積即可.【詳解】依托棱長為2的正方體得到該空間幾何體的直觀圖為三棱錐則故選:A12、C【解析】依據(jù)題意列出關(guān)于的不等式,即可求得的取值范圍.【詳解】當(dāng)時(shí),僅當(dāng)時(shí)成立,不符合題意;當(dāng)時(shí),若成立,則,解之得綜上,取值范圍是故選:C二、填空題:本題共4小題,每小題5分,共20分。13、##0.84375【解析】合理設(shè)出事件,利用全概率公式進(jìn)行求解.【詳解】設(shè)小王從這8題中任選1題,且作對為事件A,選到能完整做對的5道題為事件B,選到有思路的兩道題為事件C,選到完全沒有思路為事件D,則,,,由全概率公式可得:PA=PB故答案為:14、【解析】求導(dǎo),根據(jù)可得答案.【詳解】由題意,可得,令,即,解得,即函數(shù)的遞減區(qū)間為.故答案為:.【點(diǎn)睛】本題考查運(yùn)用導(dǎo)函數(shù)的符號,研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.15、24【解析】根據(jù)條件求得每一年投入在最終結(jié)算時(shí)的總收入,利用錯(cuò)位相減法求得總收入.【詳解】由題知,2021年的投入在結(jié)算時(shí)的收入為,2022年的投入在結(jié)算時(shí)的收入為,,2030年的投入在結(jié)算時(shí)的收入為,則結(jié)算時(shí)的總投資及收益為:①,則②,由①-②得,,則,故答案為:2416、【解析】設(shè)(),,則,,,根據(jù)數(shù)量積的定義和余弦的二倍角公式結(jié)合基本不等式即可求解詳解】如圖所示,設(shè)(),,則,,,,當(dāng)且僅當(dāng)即時(shí)等號成立,∴的最小值是.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設(shè),由橢圓的定義可得,結(jié)合余弦定理可得出的值,從而可得面積.(2)設(shè),根據(jù)的面積結(jié)合橢圓的方程求出點(diǎn)的坐標(biāo),代入拋物線可得答案.【小問1詳解】由橢圓方程知a=2,b=1,,設(shè),則即,求得所以的面積為【小問2詳解】設(shè)由(1)中,得又,,所以代入拋物線方程得,所以所以拋物線的標(biāo)準(zhǔn)方程為18、(1);(2).【解析】(1)根據(jù)二次函數(shù)的性質(zhì)求p為真時(shí)a的取值范圍,根據(jù)的性質(zhì)判斷與有交點(diǎn)求q為真時(shí)a的取值范圍,進(jìn)而求p,q均為真時(shí)a的取值范圍.(2)根據(jù)復(fù)合命題的真假可得p,q一真一假,討論p、q的真假分別求a的取值范圍,最后取并集即可.【小問1詳解】若p為真,,解得或,所以若q為真,因?yàn)樵谏蠟樵龊瘮?shù),所以,故,所以若p,q均為真命題,a的取值范圍為【小問2詳解】由題設(shè),易知:p,q兩命題一真一假當(dāng)p真q假時(shí),p為真,則或,q為假,則或,此時(shí)a的取值范圍為;當(dāng)p假q真時(shí),p為假,則,q為真,則,此時(shí)a的取值范圍為綜上,實(shí)數(shù)a的取值范圍為.19、(1),(2)【解析】(1)由,,列出方程組,求得,即可求得數(shù)列的通項(xiàng)公式,利用公式可得.(2)由(1)求得,結(jié)合“裂項(xiàng)法”求和,即可求解.【詳解】(1)設(shè)等差數(shù)列的公差為,因?yàn)椋?,可得,解得,所以?shù)列的通項(xiàng)公式.(2)由(1)知,可得,所以數(shù)列的前項(xiàng)和:.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題主要考查了等差數(shù)列的通項(xiàng)公式的求解,以及“裂項(xiàng)法”求和的應(yīng)用,解答本題的關(guān)鍵是將的通項(xiàng)裂成兩項(xiàng)的差,利用裂項(xiàng)相消求和,屬于中檔題.20、(1)遞減區(qū)間是,單調(diào)遞增區(qū)間是,極小值(2)證明見解析(3)【解析】(1)對函數(shù)進(jìn)行求導(dǎo)通分化簡,求出解得,在列出與在區(qū)間上的表格,即可得到答案.(2)由(1)知,在區(qū)間上的最小值為,因?yàn)榇嬖诹泓c(diǎn),所以,從而.在對進(jìn)行分類討論,再利用函數(shù)的單調(diào)性得出結(jié)論.(3)構(gòu)造函數(shù),在對進(jìn)行求導(dǎo),在對進(jìn)行分情況討論,即可得的得到答案.【小問1詳解】函數(shù)的定義域?yàn)椋?,由解得與在區(qū)間上的情況如下:–↘↗所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是;在處取得極小值,無極大值【小問2詳解】由(1)知,在區(qū)間上的最小值為因?yàn)榇嬖诹泓c(diǎn),所以,從而當(dāng)時(shí),在區(qū)間上單調(diào)遞減,且,所以是在區(qū)間上的唯一零點(diǎn)當(dāng)時(shí),在區(qū)間上單調(diào)遞減,且,所以在區(qū)間上僅有一個(gè)零點(diǎn)綜上可知,若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn)【小問3詳解】設(shè),①若,則,符合題意②若,則,故當(dāng)時(shí),,在上單調(diào)遞增所以,存在,使得的充要條件為,解得③若,則,故當(dāng)時(shí),;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增所以,存在,使得的充要條件為,而,所以不合題意綜上,的取值范圍是【點(diǎn)睛】本題考查求函數(shù)的單調(diào)區(qū)間和極值、證明給定區(qū)間只有一個(gè)零點(diǎn)問題,以及含參存在問題,屬于難題.21、.【解析】求得,根據(jù)其在上有兩個(gè)零點(diǎn),結(jié)合零點(diǎn)存在性定理,對參數(shù)進(jìn)行分類討論,即可求得參數(shù)的取值范圍.【詳解】因?yàn)?,所以,令,由題意可知在上有兩個(gè)不同零點(diǎn).又,若,則,故在上為增函數(shù),這與在上有兩個(gè)不同零點(diǎn)矛盾,故.當(dāng)時(shí),,為增函數(shù),當(dāng)時(shí),,為減函數(shù),故,因?yàn)樵谏嫌袃蓚€(gè)不同零點(diǎn),故,即,即,取,,故在有一個(gè)零點(diǎn),取,,令,,則,故在為減函數(shù),因?yàn)?,故,故,故在有一個(gè)零點(diǎn),故在上有兩個(gè)零點(diǎn),故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考察利用導(dǎo)數(shù)由函數(shù)的極值點(diǎn)個(gè)數(shù)求參

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論