(1.9.10)-6.9 Shear Centers of Thin-Walled材料力學(xué)材料力學(xué)_第1頁
(1.9.10)-6.9 Shear Centers of Thin-Walled材料力學(xué)材料力學(xué)_第2頁
(1.9.10)-6.9 Shear Centers of Thin-Walled材料力學(xué)材料力學(xué)_第3頁
(1.9.10)-6.9 Shear Centers of Thin-Walled材料力學(xué)材料力學(xué)_第4頁
(1.9.10)-6.9 Shear Centers of Thin-Walled材料力學(xué)材料力學(xué)_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

MechanicsofMaterialsShearCentersofThin-WalledOpenSectionsChapter6StressesinBeams(AdvancedTopics)Welcometomechanicsofmaterials.Inthissection,howtolocateshearcentersinbeamsofThin-WalledOpenCrossSectionsisexamined.-beamswithsinglysymmetricorunsymmetriccrosssections.ShearCentersofThin-WalledOpenSectionsBecausetheshearcenterofadoublysymmetriccrosssectionisknowntobelocatedatthecentroid,*onlybeamswithsinglysymmetricorunsymmetriccrosssectionsaretobeconsideredhere,suchas*crosssectionsgivenbelow.Twoprincipalsteps:1.Evaluatetheshearstressesactingonthecrosssectionwhenbendingoccursaboutoneoftheprincipalaxes.2.Determinetheresultantofthosestresses.Theshearcenterislocatedonthelineofactionoftheresultant.ProcedureforlocatingshearcentersTheprocedureforlocatingtheshearcenterconsistsof*twoprincipalsteps:*first,evaluatetheshearstressesactingonthecrosssectionwhenbendingoccursaboutoneoftheprincipalaxes,and*second,determinetheresultantofthosestresses.Theshearcenterislocatedonthelineofactionoftheresultant.Considerbendingaboutbothprincipalaxestodeterminethepositionoftheshearcenter.Asintheprivoussections,useonlycenterlinedimensionswhenderivingformulasandmakingcalculations.Thisprocedureissatisfactoryifthebeamisthin-walled,thatis,ifthethicknessofthebeamissmallcomparedtotheotherdimensionsofthecrosssection.1.ChannelsectionSinglySymmetric.Theshearcentermust

belocatedontheaxisofsymmetry,thezaxis.Shearstressformula①

τ1

intheflange:②

τ2

intheweb:③

τmax

intheweb:Thefirstbeamtobeanalyzedisa*channelsection,*singlysymmetricaboutthezaxis.Basedonthepreviousdiscussioninsection6.6,theshearcentermustbelocatedonthezaxis.AndtheoriginCisthecentroid,sothatboththeyandzaxesareprincipalcentroidalaxes.Tofindthepositionoftheshearcenter,assumethatthebeamisbentaboutthezaxisastheneutralaxis,andthendeterminethelineofactionoftheresultantshearforceVy,whichisparalleltotheyaxis.Then,TheshearcenterislocatedwherethelineofactionofVyintersectsthezaxis.*BaseduponthediscussionsinSection6.8,theshearstressesinachannelvarylinearlyintheflangesandparabolicallyintheweb.Theresultantofthosestressescanbefoundifthemaximumstressτ1intheflange,thestressτ2atthetopoftheweb,andthemaximumstressτmaxinthewebare

known.Tofindthestressτ1,τ2andτmax,*theshearstressformulaisused.

*Forthestressτ1intheflange,*Qzequaltothefirstmomentoftheflangeareaaboutthezaxis,euqaltobtftimesh/2.SubstitueQzintotheaboveformula,*τ1isfound.Inasimilarmanner,*τ2and*τmaxcanfound.④ThehorizontalshearforceF1intheflanges:⑤TheverticalforceF2intheweb:Stessdiagrammadeoftwoparts:-arectangleofarea:τ2h-aparabolicsegmentofarea:

*ThehorizontalresultantshearforceF1intheflangescanbefoundfromthetriangularstressdiagrams.*F1isequaltotheareaofthestresstrianglemultipliedbythethicknessoftheflange.*Inasimilarmanner,thevertical

resultantshearforceF2inthe

webcanbefound.

*Theareaofthestressdiagramismadeupoftwoparts—*arectangleofareaτ2hand*aparabolicsegmentofareathen

*F2inthe

webcanbefound.Ifsubstituteτ2,andτmaxintotheexpressionforF2,itisobtainedthat*theverticalforceF2mustbeequaltotheshearforceVy,sincethe

forcesintheflangeshavenoverticalcomponents.⑥Thepositionoftheshearcenter:Momentrelationship:Themomentofthethreeforcesaboutanypointinthecrosssectionmustbe

equaltothemomentoftheforceVyaboutthatsamepoint.Therefore,thethreeforcesactingonthecrosssection

havearesultant*VythatintersectsthezaxisattheshearcenterS.*Hence,themomentofthethreeforcesaboutanypointinthecrosssectionmustbeequaltothemomentoftheforceVyaboutthatsamepoint.Thismomentrelationshipprovidesanequationfromwhichthepositionoftheshearcentermaybefound.

*Here,selecttheshearcenteritselfastheasthecenterofmoments,equatingthemomentsofF1,F2andVy,gives*,whereeisthedistancefromthecenterlineofthewebtotheshearcenter.Thensolvefor*e.Thus,thepositionoftheshearcenterofachannelsectionhasbeendetermined.SinglySymmetric.Theshearcentermust

belocatedontheaxisofsymmetry,thezaxis.2.Anglesection①TheshearstressesatdistancesfromtheedgeinthelegsThenextshapetobeconsideredisan*equal-leganglesection,inwhicheachlegoftheanglehaslengthbandthicknesst.*ThezaxisisanaxisofsymmetryandtheoriginofcoordinatesisatthecentroidC;therefore,boththeyandzaxesareprincipalcentroidalaxes.Tolocatetheshearcenter,followthesamegeneralprocedureasthatdescribedforachannelsection.*Forthispurpose,selectasectionbblocatedatdistancesfrompointa,*thenusetheshearstressformulatofindthecorrespondingshearstressesinthelegsoftheangle.*thefirstmomentoftheareabetweenpointaandsectionbb

*isequalto*itsareastmultipliedby*itscentroidaldistancefromtheneutralaxis.Then,*shearstresscanbeobtained.*Shearstresscanbeexpressedinanotherform,bysubstitutingIzintotheaboveexpression.*ThemomentofinertiaIzcanbeobtainedfromCase24ofAppendixE.Ats=b③TheshearforceFineachleg:②Themaximumshearstresses:Thisequationgivestheshearstressatanypointalongthelegoftheangle.*Thestressvariesquadraticallywiths,asshowninthefigure.*Themaximumvalueoftheshearstressoccursattheintersectionofthelegsoftheangle,*wheres=b,τmax=3Vy/2bt√2.*TheshearforceFineachlegis*equaltotheareaoftheparabolicstressdiagramtimesthethicknesstofthelegs.SincethehorizontalcomponentsoftheforcesFcanceleachother,onlytheverticalcomponentsremain.*EachverticalcomponentisequaltoF/√2,or*Vy/2,sotheresultantverticalforceisequaltotheshearforceVy,asexpected.SinceVypassesthroughtheintersectionpointofthelinesofactionofthetwoforcesF,*theshearcenterSislocatedatthejunctionofthetwolegsoftheangle.Asimplelineofreasoning:Thepointofintersectionofthetwoforcesinthelegsistheshearcenter.3.SectionsConsistingofTwoIntersectingNarrowRectanglesIntheprecedingdiscussionofananglesection,theshearstressesandtheforcesinthelegswereevaluatedtolocatetheshearcenter.However,ifthesoleobjectiveistolocatetheshearcenter,itisnotnecessarytoevaluatethestressesandforces.*Sincetheshearstressesandtheirresultantsareparalleltothecenterlinesofthelegs,theresultantofthetwoforcesFis

asingleforcethatpassesthroughtheirpointofintersection.Consequently,thispointmustbetheshearcenter.

Thus,theshearcenterofanequal-leganglesectioncanbefoundbyasimplelineofreasoning,withoutmakinganycalculations.Thisisvalid*forallcrosssectionsconsistingoftwothin,intersectingrectangles.Ineachcase,theresultantsoftheshearstressesareforcesthatintersectatthejunctionoftherectangles.Therefore,theshearcenterSislocatedatthatpoint,asshowninthefigure.NoaxesofsymmetrybutsymmetricaboutthecentroidC.TheshearcenteroftheZ-sectioncoincideswiththecentroid.4.ZSectionNowdeterminethelocationoftheshearcenterofa*Z-sectionhavingthinwalls.Thesectionhas*noaxesofsymmetrybutissymmetricaboutthecentroidC.PleaserefertheSectionD.1ofAppendixDforadiscussionofsymmetryabout

apoint.Theyandzaxesareprincipalaxesthroughthecentroid.AssumingthatashearforceVyactsparalleltotheyaxisandcausesbendingaboutthezaxisastheneutralaxis.ThentheshearstressesintheflangesandwebwillbedirectedasshowninFigure.*Fromsymmetry,theforcesF1inthetwoflangesmustbeequ

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論