版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
MechanicsofMaterialsShearCentersofThin-WalledOpenSectionsChapter6StressesinBeams(AdvancedTopics)Welcometomechanicsofmaterials.Inthissection,howtolocateshearcentersinbeamsofThin-WalledOpenCrossSectionsisexamined.-beamswithsinglysymmetricorunsymmetriccrosssections.ShearCentersofThin-WalledOpenSectionsBecausetheshearcenterofadoublysymmetriccrosssectionisknowntobelocatedatthecentroid,*onlybeamswithsinglysymmetricorunsymmetriccrosssectionsaretobeconsideredhere,suchas*crosssectionsgivenbelow.Twoprincipalsteps:1.Evaluatetheshearstressesactingonthecrosssectionwhenbendingoccursaboutoneoftheprincipalaxes.2.Determinetheresultantofthosestresses.Theshearcenterislocatedonthelineofactionoftheresultant.ProcedureforlocatingshearcentersTheprocedureforlocatingtheshearcenterconsistsof*twoprincipalsteps:*first,evaluatetheshearstressesactingonthecrosssectionwhenbendingoccursaboutoneoftheprincipalaxes,and*second,determinetheresultantofthosestresses.Theshearcenterislocatedonthelineofactionoftheresultant.Considerbendingaboutbothprincipalaxestodeterminethepositionoftheshearcenter.Asintheprivoussections,useonlycenterlinedimensionswhenderivingformulasandmakingcalculations.Thisprocedureissatisfactoryifthebeamisthin-walled,thatis,ifthethicknessofthebeamissmallcomparedtotheotherdimensionsofthecrosssection.1.ChannelsectionSinglySymmetric.Theshearcentermust
belocatedontheaxisofsymmetry,thezaxis.Shearstressformula①
τ1
intheflange:②
τ2
intheweb:③
τmax
intheweb:Thefirstbeamtobeanalyzedisa*channelsection,*singlysymmetricaboutthezaxis.Basedonthepreviousdiscussioninsection6.6,theshearcentermustbelocatedonthezaxis.AndtheoriginCisthecentroid,sothatboththeyandzaxesareprincipalcentroidalaxes.Tofindthepositionoftheshearcenter,assumethatthebeamisbentaboutthezaxisastheneutralaxis,andthendeterminethelineofactionoftheresultantshearforceVy,whichisparalleltotheyaxis.Then,TheshearcenterislocatedwherethelineofactionofVyintersectsthezaxis.*BaseduponthediscussionsinSection6.8,theshearstressesinachannelvarylinearlyintheflangesandparabolicallyintheweb.Theresultantofthosestressescanbefoundifthemaximumstressτ1intheflange,thestressτ2atthetopoftheweb,andthemaximumstressτmaxinthewebare
known.Tofindthestressτ1,τ2andτmax,*theshearstressformulaisused.
*Forthestressτ1intheflange,*Qzequaltothefirstmomentoftheflangeareaaboutthezaxis,euqaltobtftimesh/2.SubstitueQzintotheaboveformula,*τ1isfound.Inasimilarmanner,*τ2and*τmaxcanfound.④ThehorizontalshearforceF1intheflanges:⑤TheverticalforceF2intheweb:Stessdiagrammadeoftwoparts:-arectangleofarea:τ2h-aparabolicsegmentofarea:
*ThehorizontalresultantshearforceF1intheflangescanbefoundfromthetriangularstressdiagrams.*F1isequaltotheareaofthestresstrianglemultipliedbythethicknessoftheflange.*Inasimilarmanner,thevertical
resultantshearforceF2inthe
webcanbefound.
*Theareaofthestressdiagramismadeupoftwoparts—*arectangleofareaτ2hand*aparabolicsegmentofareathen
*F2inthe
webcanbefound.Ifsubstituteτ2,andτmaxintotheexpressionforF2,itisobtainedthat*theverticalforceF2mustbeequaltotheshearforceVy,sincethe
forcesintheflangeshavenoverticalcomponents.⑥Thepositionoftheshearcenter:Momentrelationship:Themomentofthethreeforcesaboutanypointinthecrosssectionmustbe
equaltothemomentoftheforceVyaboutthatsamepoint.Therefore,thethreeforcesactingonthecrosssection
havearesultant*VythatintersectsthezaxisattheshearcenterS.*Hence,themomentofthethreeforcesaboutanypointinthecrosssectionmustbeequaltothemomentoftheforceVyaboutthatsamepoint.Thismomentrelationshipprovidesanequationfromwhichthepositionoftheshearcentermaybefound.
*Here,selecttheshearcenteritselfastheasthecenterofmoments,equatingthemomentsofF1,F2andVy,gives*,whereeisthedistancefromthecenterlineofthewebtotheshearcenter.Thensolvefor*e.Thus,thepositionoftheshearcenterofachannelsectionhasbeendetermined.SinglySymmetric.Theshearcentermust
belocatedontheaxisofsymmetry,thezaxis.2.Anglesection①TheshearstressesatdistancesfromtheedgeinthelegsThenextshapetobeconsideredisan*equal-leganglesection,inwhicheachlegoftheanglehaslengthbandthicknesst.*ThezaxisisanaxisofsymmetryandtheoriginofcoordinatesisatthecentroidC;therefore,boththeyandzaxesareprincipalcentroidalaxes.Tolocatetheshearcenter,followthesamegeneralprocedureasthatdescribedforachannelsection.*Forthispurpose,selectasectionbblocatedatdistancesfrompointa,*thenusetheshearstressformulatofindthecorrespondingshearstressesinthelegsoftheangle.*thefirstmomentoftheareabetweenpointaandsectionbb
*isequalto*itsareastmultipliedby*itscentroidaldistancefromtheneutralaxis.Then,*shearstresscanbeobtained.*Shearstresscanbeexpressedinanotherform,bysubstitutingIzintotheaboveexpression.*ThemomentofinertiaIzcanbeobtainedfromCase24ofAppendixE.Ats=b③TheshearforceFineachleg:②Themaximumshearstresses:Thisequationgivestheshearstressatanypointalongthelegoftheangle.*Thestressvariesquadraticallywiths,asshowninthefigure.*Themaximumvalueoftheshearstressoccursattheintersectionofthelegsoftheangle,*wheres=b,τmax=3Vy/2bt√2.*TheshearforceFineachlegis*equaltotheareaoftheparabolicstressdiagramtimesthethicknesstofthelegs.SincethehorizontalcomponentsoftheforcesFcanceleachother,onlytheverticalcomponentsremain.*EachverticalcomponentisequaltoF/√2,or*Vy/2,sotheresultantverticalforceisequaltotheshearforceVy,asexpected.SinceVypassesthroughtheintersectionpointofthelinesofactionofthetwoforcesF,*theshearcenterSislocatedatthejunctionofthetwolegsoftheangle.Asimplelineofreasoning:Thepointofintersectionofthetwoforcesinthelegsistheshearcenter.3.SectionsConsistingofTwoIntersectingNarrowRectanglesIntheprecedingdiscussionofananglesection,theshearstressesandtheforcesinthelegswereevaluatedtolocatetheshearcenter.However,ifthesoleobjectiveistolocatetheshearcenter,itisnotnecessarytoevaluatethestressesandforces.*Sincetheshearstressesandtheirresultantsareparalleltothecenterlinesofthelegs,theresultantofthetwoforcesFis
asingleforcethatpassesthroughtheirpointofintersection.Consequently,thispointmustbetheshearcenter.
Thus,theshearcenterofanequal-leganglesectioncanbefoundbyasimplelineofreasoning,withoutmakinganycalculations.Thisisvalid*forallcrosssectionsconsistingoftwothin,intersectingrectangles.Ineachcase,theresultantsoftheshearstressesareforcesthatintersectatthejunctionoftherectangles.Therefore,theshearcenterSislocatedatthatpoint,asshowninthefigure.NoaxesofsymmetrybutsymmetricaboutthecentroidC.TheshearcenteroftheZ-sectioncoincideswiththecentroid.4.ZSectionNowdeterminethelocationoftheshearcenterofa*Z-sectionhavingthinwalls.Thesectionhas*noaxesofsymmetrybutissymmetricaboutthecentroidC.PleaserefertheSectionD.1ofAppendixDforadiscussionofsymmetryabout
apoint.Theyandzaxesareprincipalaxesthroughthecentroid.AssumingthatashearforceVyactsparalleltotheyaxisandcausesbendingaboutthezaxisastheneutralaxis.ThentheshearstressesintheflangesandwebwillbedirectedasshowninFigure.*Fromsymmetry,theforcesF1inthetwoflangesmustbeequ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 研學(xué)教師發(fā)言稿簡短
- 經(jīng)典POP海報(bào)校園篇
- 人教版音樂(簡譜)七年級(jí)上冊(cè)第一單元《校園的早晨》表格教
- 汽車發(fā)動(dòng)機(jī)構(gòu)造與維修完整版電子課件
- 天津新村社區(qū)工會(huì)“職工書屋”申報(bào)材料
- 錫冶煉新技術(shù)研究考核試卷
- 窗簾布藝的環(huán)保認(rèn)證標(biāo)準(zhǔn)考核試卷
- 藥物靶點(diǎn)網(wǎng)絡(luò)分析-洞察分析
- 危廢轉(zhuǎn)化與資源循環(huán)利用研究-洞察分析
- 繪畫作品介紹范文
- 2024年四川省內(nèi)江市中考英語試題(含答案)
- 平安產(chǎn)險(xiǎn)云南省商業(yè)性桑蠶養(yǎng)殖保險(xiǎn)條款
- 股權(quán)協(xié)議書和合伙人協(xié)議書
- 河南省駐馬店市2023-2024學(xué)年高一上學(xué)期1月期末語文試題(含答案解析)
- 幼兒園名師公開課:小班安全《超市安全我知道》微課件
- MOOC 英文技術(shù)寫作-東南大學(xué) 中國大學(xué)慕課答案
- 2022年10月自考00850廣告設(shè)計(jì)基礎(chǔ)試題及答案含解析
- 工會(huì)委員會(huì)會(huì)議紀(jì)要
- 《水電工程水文設(shè)計(jì)規(guī)范》(NB-T 10233-2019)
- 2024年1月電大國家開放大學(xué)期末考試試題及答案:法理學(xué)
- (高清版)DZT 0284-2015 地質(zhì)災(zāi)害排查規(guī)范
評(píng)論
0/150
提交評(píng)論