




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
滬教版八年級上冊壓軸題數(shù)學數(shù)學模擬試題一、壓軸題1.(1)在等邊三角形ABC中,①如圖①,D,E分別是邊AC,AB上的點且AE=CD,BD與EC交于點F,則∠BFE的度數(shù)是度;②如圖②,D,E分別是邊AC,BA延長線上的點且AE=CD,BD與EC的延長線交于點F,此時∠BFE的度數(shù)是度;(2)如圖③,在△ABC中,AC=BC,∠ACB是銳角,點O是AC邊的垂直平分線與BC的交點,點D,E分別在AC,OA的延長線上,AE=CD,BD與EC的延長線交于點F,若∠ACB=α,求∠BFE的大?。ㄓ煤恋拇鷶?shù)式表示).解析:(1)①60°;②60°;(2)∠BFE=α.【解析】【分析】(1)①先證明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先證明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)證明△AEC≌△CDB得到∠E=∠D,則∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【詳解】(1)如圖①中,∵△ABC是等邊三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案為60.(2)如圖②中,∵△ABC是等邊三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案為60.(3)如圖③中,∵點O是AC邊的垂直平分線與BC的交點,∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【點睛】本題綜合考查了三角形全等以及三角形外角和定理.2.(閱讀材料):(1)在中,若,由“三角形內角和為180°”得.(2)在中,若,由“三角形內角和為180°”得.(解決問題):如圖①,在平面直角坐標系中,點C是x軸負半軸上的一個動點.已知軸,交y軸于點E,連接CE,CF是∠ECO的角平分線,交AB于點F,交y軸于點D.過E點作EM平分∠CEB,交CF于點M.(1)試判斷EM與CF的位置關系,并說明理由;(2)如圖②,過E點作PE⊥CE,交CF于點P.求證:∠EPC=∠EDP;(3)在(2)的基礎上,作EN平分∠AEP,交OC于點N,如圖③.請問隨著C點的運動,∠NEM的度數(shù)是否發(fā)生變化?若不變,求出其值:若變化,請說明理由.解析:(1)EM⊥CF,理由見解析;(2)證明見解析;(3)不變,且∠NEM=45°,理由見解析.【解析】【分析】(1)EM⊥CF,分別利用角平分線的性質、平行線的性質、三角形的內角和定理進行求證即可;(2)根據(jù)垂直定義和三角形的內角和定理證得∠DCO+∠CDO=90°,∠ECP+∠EPC=90°,再利用等角的余角相等和對頂角相等即可證得結論;(3)不變,且∠NEM=45°,先利用平行線的性質得到∠AEC=∠ECO=2∠ECP,進而有∠AEP=∠CEP+∠AEC=90°+2∠ECP,再由角平分線的定義∠NEP=∠AEN=45°+∠ECP,再根據(jù)同角的余角相等得到∠ECP=∠MEP,然后等量代換證得∠NEM=45°,是定值.【詳解】解:(1)EM⊥CF,理由如下:∵CF平分∠ECO,EM平分∠FEC,∴∠ECF=∠FCO=,∠FEM=∠CEM=∵AB∥x軸∴∠ECO+∠CEF=180°∴∠EMC=180°-(∠CEM+∠ECF)=180°-90°=90°∴EM⊥CF(2)由題得,∠EOC=90°∴∠DCO+∠CDO=180°-∠EOC=180°-90°=90°∵PE⊥CE∴∠CEP=90°∴∠ECP+∠EPC=180°-∠CEP=180°-90°=90°∵∠DCO=∠ECP∴∠CDO=∠EPC又∵∠CDO=∠EDP∴∠EPC=∠EDP(3)不變,且∠NEM=45°,理由如下:∵AB∥x軸∴∠AEC=∠ECO=2∠ECP∴∠AEP=∠CEP+∠AEC=90°+2∠ECP∵EN平分∠AEP∴∠NEP=∠AEN===45°+∠ECP∵∠CEP=90°∴∠ECP+∠EPC=90°又∵∠EMC=90°∴∠MEP+∠EPC=90°∴∠ECP=∠MEP∴∠NEP=∠NEM+∠MEP=∠NEM+∠ECP又∵∠NEP=45°+∠ECP∴∠NEM=45°.【點睛】本題是一道綜合探究題,涉及有平行線的性質、角平分線的定義、三角形的內角和定理、同(等)角的余角相等、對頂角相等、垂線性質等知識,解答的關鍵是認真審題,結合圖形,尋找相關聯(lián)信息,確定解題思路,進而探究、推理、論證.3.如圖,在中,,,點D在邊BC上運動(點D不與點重合),連接AD,作,DE交邊AC于點E.(1)當時,,(2)當DC等于多少時,,請說明理由;(3)在點D的運動過程中,的形狀可以是等腰三角形嗎?若可以,請求出的度數(shù);若不可以,請說明理由.解析:(1)30,100;(2),見解析;(3)可以,或【解析】【分析】(1)根據(jù)平角的定義,可求出∠EDC的度數(shù),根據(jù)三角形內和定理,即可求出∠DEC;(2)當AB=DC時,利用AAS可證明ΔABD?ΔDCE,即可得出AB=DC=3;(3)假設ΔADE是等腰三角形,分為三種情況討論:①當DA=DE時,求出∠DAE=∠DEA=70°,求出∠BAC,根據(jù)三角形的內角和定理求出∠BAD,根據(jù)三角形的內角和定理求出∠BDA即可;②當AD=AE時,∠ADE=∠AED=40°,根據(jù)∠AED>∠C,得出此時不符合;③當EA=ED時,求出∠DAC,求出∠BAD,根據(jù)三角形的內角和定理求出∠ADB.【詳解】(1)在△BAD中,∵∠B=50°,∠BDA=100°,∴,.故答案為,.(2)當時,,理由如下:∵,∴∵,∴∵∴在和中∴(3)可以,理由如下:∵,∴分三種情況討論:①當時,∵,∴∴∵∴②當時,∵∴又∵∴∴點D與點B重合,不合題意.③當時,∴∵∴綜上所述,當?shù)亩葦?shù)為或時,是等腰三角形.【點睛】本題考查的是等腰三角形的判定與性質、全等三角形的判定與性質、三角形外角的性質,掌握全等三角形的判定定理和性質定理、靈活運用分情況討論思想是解題的關鍵.4.現(xiàn)給出一個結論:直角三角形斜邊的中線等于斜邊的一半;該結論是正確的,用圖形語言可以表示為:如圖1在中,,若點D為AB的中點,則.請結合上述結論解決如下問題:已知,點P是射線BA上一動點(不與A,B重合)分別過點A,B向直線CP作垂線,垂足分別為E,F,其中Q為AB的中點(1)如圖2,當點P與點Q重合時,AE與BF的位置關系____________;QE與QF的數(shù)量關系是__________(2)如圖3,當點P在線段AB上不與點Q重合時,試判斷QE與QF的數(shù)量關系,并給予證明.(3)如圖4,當點P在線段BA的延長線上時,此時(2)中的結論是否成立?請畫出圖形并寫出主要證明思路.解析:(1)AE//BF;QE=QF;(2)QE=QF,證明見解析;(3)結論成立,證明見解析.【解析】【分析】(1)根據(jù)AAS得到,得到、QE=QF,根據(jù)內錯角相等兩直線平行,得到AE//BF;(2)延長EQ交BF于D,根據(jù)AAS判斷得出,因此,根據(jù)直角三角形斜邊的中線等于斜邊的一半即可證明;(3)延長EQ交FB的延長于D,根據(jù)AAS判斷得出,因此,根據(jù)直角三角形斜邊的中線等于斜邊的一半即可證明.【詳解】(1)AE//BF;QE=QF(2)QE=QF證明:延長EQ交BF于D,,(3)當點P在線段BA延長線上時,此時(2)中結論成立證明:延長EQ交FB的延長于D因為AE//BF所以EQ=QF【點睛】本題考查了三角形全等的判定方法:AAS,平行線的性質,根據(jù)P點位置不同,畫出正確的圖形,找到AAS的條件是解決本題的關鍵.5.(概念認識)如圖①,在∠ABC中,若∠ABD=∠DBE=∠EBC,則BD,BE叫做∠ABC的“三分線”.其中,BD是“鄰AB三分線”,BE是“鄰BC三分線”.(問題解決)(1)如圖②,在△ABC中,∠A=70°,∠B=45°,若∠B的三分線BD交AC于點D,則∠BDC=°;(2)如圖③,在△ABC中,BP、CP分別是∠ABC鄰AB三分線和∠ACB鄰AC三分線,且BP⊥CP,求∠A的度數(shù);(延伸推廣)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分線所在的直線與∠ACD的三分線所在的直線交于點P.若∠A=m°,∠B=n°,直接寫出∠BPC的度數(shù).(用含m、n的代數(shù)式表示)解析:(1)85或100;(2)45°;(3)m或m或m+n或m-n或n-m【解析】【分析】(1)根據(jù)題意可得的三分線有兩種情況,畫圖根據(jù)三角形的外角性質即可得的度數(shù);(2)根據(jù)、分別是鄰三分線和鄰三分線,且可得,進而可求的度數(shù);(3)根據(jù)的三分線所在的直線與的三分線所在的直線交于點.分四種情況畫圖:情況一:如圖①,當和分別是“鄰三分線”、“鄰三分線”時;情況二:如圖②,當和分別是“鄰三分線”、“鄰三分線”時;情況三:如圖③,當和分別是“鄰三分線”、“鄰三分線”時;情況四:如圖④,當和分別是“鄰三分線”、“鄰三分線”時,再根據(jù),,即可求出的度數(shù).【詳解】解:(1)如圖,當是“鄰三分線”時,;當是“鄰三分線”時,;故答案為:85或100;(2),,,又、分別是鄰三分線和鄰三分線,,,,,在中,.(3)分4種情況進行畫圖計算:情況一:如圖①,當和分別是“鄰三分線”、“鄰三分線”時,;情況二:如圖②,當和分別是“鄰三分線”、“鄰三分線”時,;情況三:如圖③,當和分別是“鄰三分線”、“鄰三分線”時,;情況四:如圖④,當和分別是“鄰三分線”、“鄰三分線”時,①當時,;②當時,.【點睛】本題考查了三角形的外角性質,解決本題的關鍵是掌握三角形的外角性質.注意要分情況討論.6.已知ABC,P是平面內任意一點(A、B、C、P中任意三點都不在同一直線上).連接PB、PC,設∠PBA=s°,∠PCA=t°,∠BPC=x°,∠BAC=y(tǒng)°.(1)如圖,當點P在ABC內時,①若y=70,s=10,t=20,則x=;②探究s、t、x、y之間的數(shù)量關系,并證明你得到的結論.(2)當點P在ABC外時,直接寫出s、t、x、y之間所有可能的數(shù)量關系,并畫出相應的圖形.解析:(1)①100;②x=y+s+t;(2)見詳解.【解析】【分析】(1)①利用三角形的內角和定理即可解決問題;②結論:x=y+s+t.利用三角形內角和定理即可證明;(2)分6種情形分別求解即可解決問題.【詳解】解:(1)①∵∠BAC=70°,∴∠ABC+∠ACB=110°,∵∠PBA=10°,∠PCA=20°,∴∠PBC+∠PCB=80°,∴∠BPC=100°,∴x=100,故答案為:100.②結論:x=y+s+t.理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC=180°,∴∠A+∠PBA+∠PCA=∠BPC,∴x=y+s+t.(2)s、t、x、y之間所有可能的數(shù)量關系:如圖1:s+x=t+y;如圖2:s+y=t+x;如圖3:y=x+s+t;如圖4:x+y+s+t=360°;如圖5:t=s+x+y;如圖6:s=t+x+y;【點睛】本題考查三角形的內角和定理,三角形的外角的性質等知識,解題的關鍵是學會用分類討論的思想思考問題.7.在等邊△ABC的頂點A、C處各有一只蝸牛,它們同時出發(fā),分別以每分鐘1米的速度由A向B和由C向A爬行,其中一只蝸牛爬到終點時,另一只也停止運動,經(jīng)過t分鐘后,它們分別爬行到D、E處,請問:(1)如圖1,在爬行過程中,CD和BE始終相等嗎,請證明?(2)如果將原題中的“由A向B和由C向A爬行”,改為“沿著AB和CA的延長線爬行”,EB與CD交于點Q,其他條件不變,蝸牛爬行過程中∠CQE的大小保持不變,請利用圖2說明:∠CQE=60°;(3)如果將原題中“由C向A爬行”改為“沿著BC的延長線爬行,連接DE交AC于F”,其他條件不變,如圖3,則爬行過程中,證明:DF=EF解析:(1)相等,證明見解析;(2)證明見解析;(3)證明見解析.【解析】【分析】(1)先證明△ACD≌△CBE,再由全等三角形的性質即可證得CD=BE;(2)先證明△BCD≌△ABE,得到∠BCD=∠ABE,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC,∠CQE=180°-∠DQB,即可解答;(3)如圖3,過點D作DG∥BC交AC于點G,根據(jù)等邊三角形的三邊相等,可以證得AD=DG=CE;進而證明△DGF和△ECF全等,最后根據(jù)全等三角形的性質即可證明.【詳解】(1)解:CD和BE始終相等,理由如下:如圖1,AB=BC=CA,兩只蝸牛速度相同,且同時出發(fā),∴CE=AD,∠A=∠BCE=60°在△ACD與△CBE中,AC=CB,∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴CD=BE,即CD和BE始終相等;(2)證明:根據(jù)題意得:CE=AD,∵AB=AC,∴AE=BD,∴△ABC是等邊三角形,∴AB=BC,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC,在△BCD和△ABE中,BC=AB,∠DBC=∠EAB,BD=AE∴△BCD≌△ABE(SAS),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行過程中,DF始終等于EF是正確的,理由如下:如圖,過點D作DG∥BC交AC于點G,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E,∴△ADG為等邊三角形,∴AD=DG=CE,在△DGF和△ECF中,∠GFD=∠CFE,∠GDF=∠E,DG=EC∴△DGF≌△EDF(AAS),∴DF=EF.【點睛】本題主要考查了全等三角形的判定與性質和等邊三角形的性質;題弄懂題中所給的信息,再根據(jù)所提供的思路尋找證明條件是解答本題的關鍵.8.請按照研究問題的步驟依次完成任務.(問題背景)(1)如圖1的圖形我們把它稱為“8字形”,請說理證明∠A+∠B=∠C+∠D.(簡單應用)(2)如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度數(shù)(可直接使用問題(1)中的結論)(問題探究)(3)如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,猜想∠P的度數(shù)為;(拓展延伸)(4)在圖4中,若設∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間的數(shù)量關系為(用x、y表示∠P);(5)在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、D的關系,直接寫出結論.解析:(1)見解析;(2)∠P=23o;(3)∠P=26o;(4)∠P=;(5)∠P=.【解析】【分析】(1)根據(jù)三角形內角和定理即可證明;(2)如圖2,根據(jù)角平分線的性質得到∠1=∠2,∠3=∠4,列方程組即可得到結論;(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解決問題;(4)根據(jù)題意得出∠B+∠CAB=∠C+∠BDC,再結合∠CAP=∠CAB,∠CDP=∠CDB,得到y(tǒng)+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),從而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=;(5)根據(jù)題意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再結合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD+∠D=.【詳解】解:(1)證明:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2)解:如圖2,∵AP、CP分別平分∠BAD,∠BCD,∴∠1=∠2,∠3=∠4,由(1)的結論得:,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,∴∠P=(∠B+∠D)=23°;(3)解:如圖3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,∴2∠P=∠B+∠D,∴∠P=(∠B+∠D)=×(36°+16°)=26°;故答案為:26°;(4)由題意可得:∠B+∠CAB=∠C+∠BDC,即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y,∠B+∠BAP=∠P+∠PDB,即y+∠BAP=∠P+∠PDB,即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP),即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=y+(∠CAB-∠CDB)=y+(x-y)=故答案為:∠P=;(5)由題意可得:∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,∴∠B-∠D=∠BCD-∠BAD,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠BAP=∠DAP,∠PCE=∠PCB,∴∠BAD+∠P=(∠BCD+∠BCE)+∠D,∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,∴∠P=90°+∠BCD-∠BAD+∠D=90°+(∠BCD-∠BAD)+∠D=90°+(∠B-∠D)+∠D=,故答案為:∠P=.【點睛】本題考查三角形內角和,三角形的外角的性質、多邊形的內角和等知識,解題的關鍵是學會用方程組的思想思考問題,屬于中考??碱}型.9.已知:中,過B點作BE⊥AD,.(1)如圖1,點在的延長線上,連,作于,交于點.求證:;(2)如圖2,點在線段上,連,過作,且,連交于,連,問與有何數(shù)量關系,并加以證明;(3)如圖3,點在CB延長線上,且,連接、的延長線交于點,若,請直接寫出的值.解析:(1)見詳解,(2),證明見詳解,(3).【解析】【分析】(1)欲證明,只要證明即可;(2)結論:.如圖2中,作于.只要證明,推出,,由,推出即可解決問題;(3)利用(2)中結論即可解決問題;【詳解】(1)證明:如圖1中,于,,,,,(AAS),.(2)結論:.理由:如圖2中,作于.,,,,,,,,,,,,,,,.(3)如圖3中,作于交AC延長線于.,,,,,,,,,,,,,,,.,設,則,,.【點睛】本題考查三角形綜合題、全等三角形的判定和性質、等腰直角三角形的性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,屬于中考壓軸題.另外對于類似連續(xù)幾步的綜合題,一般前一步為后一步提供解題的條件或方法.10.閱讀并填空:如圖,是等腰三角形,,是邊延長線上的一點,在邊上且聯(lián)接交于,如果,那么,為什么?解:過點作交于所以(兩直線平行,同位角相等)(________)在與中所以,(________)所以(________)因為(已知)所以(________)所以(等量代換)所以(________)所以解析:見解析【解析】【分析】先根據(jù)平行線的性質,得到角的關系,然后證明,寫出證明過程和依據(jù)即可.【詳解】解:過點作交于,∴(兩直線平行,同位角相等),∴(兩直線平行,內錯角相等),在與中,∴,()∴(全等三角形對應邊相等)∵(已知)∴(等邊對等角)∴(等量代換)∴(等角對等邊)∴;【點睛】本題考查了全等三角形的判定和性質,平行線的性質,解題的關鍵是由平行線的性質正確找到證明三角形全等的條件,從而進行證明.11.在等腰中,,為邊上的高,點在的外部且,,連接交直線于點,連接.(1)如圖①,當時,求證:;(2)如圖②,當時,求的度數(shù);(3)如圖③,當時,求證:.解析:(1)見解析;(2);(3)見解析【解析】【分析】(1)根據(jù)等腰三角形三線合一的性質,可得AE垂直平分BC,F(xiàn)為垂直平分線AE上點,即可得出結論;(2)根據(jù)(1)的結論可得AE平分∠BAC,∠BAF=20°,由AB=AC=AD,推出,根據(jù)外角性質可得計算即可;(3)在CF上截取CM=DF,連接AM,證明△ACM≌△ADF(SAS),進而證得△AFM為等邊三角形即可.【詳解】(1)證明:∵AE為等腰△ABC底邊BC上的高線,AB=AC,,∠AEB=∠AEC=90°,BE=CE,∴AE垂直平分BE,F(xiàn)在AE上,;(2),,,,由(1)知,AE平分∠BAC,,,故答案為:60°;(3)在CF上截取CM=DF,連接AM,由(1)可知,∠ABC=∠ACB,∠FBC=∠FCB,,,,,在△ACM和△ADF中,∴△ACM≌△ADF(SAS),,,∴△AFM為等邊三角形,,.【點睛】本題考查了等腰三角形的性質,垂直平分線的性質,三角形全等的判定和性質,等邊三角形的判定和性質,掌握三角形全等的判定和性質是解題的關鍵.12.探究:如圖①,在△ABC中,∠ACB=90°,CD⊥AB于點D,若∠B=30°,則∠ACD的度數(shù)是度;拓展:如圖②,∠MCN=90°,射線CP在∠MCN的內部,點A、B分別在CM、CN上,分別過點A、B作AD⊥CP、BE⊥CP,垂足分別為D、E,若∠CBE=70°,求∠CAD的度數(shù);應用:如圖③,點A、B分別在∠MCN的邊CM、CN上,射線CP在∠MCN的內部,點D、E在射線CP上,連接AD、BE,若∠ADP=∠BEP=60°,則∠CAD+∠CBE+∠ACB=度.解析:探究:30;(2)拓展:20°;(3)應用:120【解析】【分析】(1)利用直角三角形的性質依次求出∠A,∠ACD即可;(2)利用直角三角形的性質直接計算得出即可;(3)利用三角形的外角的性質得出結論,直接轉化即可得出結論.【詳解】(1)在△ABC中,∠ACB=90°,∠B=30°,∴∠A=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=90°﹣∠A=30°;故答案為:30,(2)∵BE⊥CP,∴∠BEC=90°,∵∠CBE=70°,∴∠BCE=90°﹣∠CBE=20°,∵∠ACB=90°,∴∠ACD=90°﹣∠BCE=70°,∵AD⊥CP,∴∠CAD=90°﹣∠ACD=20°;(3)∵∠ADP是△ACD的外角,∴∠ADP=∠ACD+∠CAD=60°,同理,∠BEP=∠BCE+∠CBE=60°,∴∠CAD+∠CBE+∠ACB=∠CAD+∠CBE+∠ACD+∠BCE=(∠CAD+∠ACD)+(∠CBE+∠BCE)=120°,故答案為120.【點睛】此題是三角形的綜合題,主要考查了直角三角形的性質,三角形的外角的性質,垂直的定義,解本題的關鍵是充分利用直角三角形的性質:兩銳角互余,是一道比較簡單的綜合題.13.已知和都是等腰三角形,,,.(初步感知)(1)特殊情形:如圖①,若點,分別在邊,上,則__________.(填>、<或=)(2)發(fā)現(xiàn)證明:如圖②,將圖①中的繞點旋轉,當點在外部,點在內部時,求證:.(深入研究)(3)如圖③,和都是等邊三角形,點,,在同一條直線上,則的度數(shù)為__________;線段,之間的數(shù)量關系為__________.(4)如圖④,和都是等腰直角三角形,,點、、在同一直線上,為中邊上的高,則的度數(shù)為__________;線段,,之間的數(shù)量關系為__________.(拓展提升)(5)如圖⑤,和都是等腰直角三角形,,將繞點逆時針旋轉,連結、.當,時,在旋轉過程中,與的面積和的最大值為__________.解析:(1)=;(2)證明見解析;(3)60°,BD=CE;(4)90°,AM+BD=CM;(5)7【解析】【分析】(1)由DE∥BC,得到,結合AB=AC,得到DB=EC;(2)由旋轉得到的結論判斷出△DAB≌△EAC,得到DB=CE;(3)根據(jù)等邊三角形的性質和全等三角形的判定定理證明△DAB≌△EAC,根據(jù)全等三角形的性質求出結論;(4)根據(jù)全等三角形的判定和性質和等腰直角三角形的性質即可得到結論;(5)根據(jù)旋轉的過程中△ADE的面積始終保持不變,而在旋轉的過程中,△ADC的AC始終保持不變,即可.【詳解】[初步感知](1)∵DE∥BC,∴,∵AB=AC,∴DB=EC,故答案為:=,(2)成立.理由:由旋轉性質可知∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如圖③,設AB,CD交于O,∵△ABC和△ADE都是等邊三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴∠ADB=∠AEC=135°,BD=CE,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE都是等腰直角三角形,AM為△ADE中DE邊上的高,∴AM=EM=MD,∴AM+BD=CM;故答案為:90°,AM+BD=CM;【拓展提升】(5)如圖,由旋轉可知,在旋轉的過程中△ADE的面積始終保持不變,△ADE與△ADC面積的和達到最大,∴△ADC面積最大,∵在旋轉的過程中,AC始終保持不變,∴要△ADC面積最大,∴點D到AC的距離最大,∴DA⊥AC,∴△ADE與△ADC面積的和達到的最大為2+×AC×AD=5+2=7,故答案為7.【點睛】此題是幾何變換綜合題,主要考查了旋轉和全等三角形的性質和判定,旋轉過程中面積變化分析,解本題的關鍵是三角形全等的判定.14.(閱讀材科)小明同學發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的項角的頂點,并把它們的底角頂點連接起來則形成一組全等的三角形,小明把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小明發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則△ABD≌△ACE.(材料理解)(1)在圖1中證明小明的發(fā)現(xiàn).(深入探究)(2)如圖2,△ABC和△AED是等邊三角形,連接BD,EC交于點O,連接AO,下列結論:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正確的有.(將所有正確的序號填在橫線上).(延伸應用)(3)如圖3,AB=BC,∠ABC=∠BDC=60°,試探究∠A與∠C的數(shù)量關系.解析:(1)證明見解析;(2)①②③;(3)∠A+∠C=180°.【解析】【分析】(1)利用等式的性質得出∠BAD=∠CAE,即可得出結論;(2)同(1)的方法判斷出△ABD≌△ACE,得出BD=CE,再利用對頂角和三角形的內角和定理判斷出∠BOC=60°,再判斷出△BCF≌△ACO,得出∠AOC=120°,進而得出∠AOE=60°,再判斷出BF<CF,進而判斷出∠OBC>30°,即可得出結論;(3)先判斷出△BDP是等邊三角形,得出BD=BP,∠DBP=60°,進而判斷出△ABD≌△CBP(SAS),即可得出結論.【詳解】(1)證明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE;(2)如圖2,∵△ABC和△ADE是等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE,①正確,∠ADB=∠AEC,記AD與CE的交點為G,∵∠AGE=∠DGO,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正確,在OB上取一點F,使OF=OC,∴△OCF是等邊三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正確,連接AF,要使OC=OE,則有OC=CE,∵BD=CE,∴CF=OF=BD,∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而沒辦法判斷∠OBC大于30度,所以,④不一定正確,即:正確的有①②③,故答案為①②③;(3)如圖3,延長DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等邊三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【點睛】此題考查三角形綜合題,等腰三角形的性質,等邊三角形的性質,全等三角形的判定和性質,構造等邊三角形是解題的關鍵.15.已知在△ABC中,AB=AC,射線BM、BN在∠ABC內部,分別交線段AC于點G、H.(1)如圖1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于點D,分別交BC、BM于點E、F.①求證:∠1=∠2;②如圖2,若BF=2AF,連接CF,求證:BF⊥CF;(2)如圖3,點E為BC上一點,AE交BM于點F,連接CF,若∠BFE=∠BAC=2∠CFE,求的值.解析:(1)①見解析;②見解析;(2)2【解析】【分析】(1)①只要證明∠2+∠BAF=∠1+∠BAF=60°即可解決問題;②只要證明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,連接AK.只要證明△ABK≌CAF,可得S△ABK=S△AFC,再證明AF=FK=BK,可得S△ABK=S△AFK,即可解決問題;【詳解】(1)①證明:如圖1中,∵AB=AC,∠ABC=60°∴△ABC是等邊三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②證明:如圖2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,連接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴.【點睛】本題考查全等三角形的判定和性質、等邊三角形的性質、等腰三角形的判定和性質、直角三角形30度角性質等知識,解題的關鍵是能夠正確添加常用輔助線,構造全等三角形解決問題,屬于中考壓軸題.二、選擇題16.近年來,國家重視精準扶貧,收效顯著.據(jù)統(tǒng)計約有65000000人脫貧,把65000000用科學記數(shù)法表示,正確的是()A.0.65×108 B.6.5×107 C.6.5×108 D.65×106解析:B【解析】分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于10時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).詳解:65000000=6.5×107.故選B.點睛:此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.17.購買單價為a元的物品10個,付出b元(b>10a),應找回()A.(b﹣a)元 B.(b﹣10)元 C.(10a﹣b)元 D.(b﹣10a)元解析:D【解析】【分析】根據(jù)題意知:花了10a元,剩下(b﹣10a)元.【詳解】購買單價為a元的物品10個,付出b元(b>10a),應找回(b﹣10a)元.故選D.【點睛】本題考查了列代數(shù)式,能讀懂題意是解答此題的關鍵.18.如圖,實數(shù)﹣3、x、3、y在數(shù)軸上的對應點分別為M、N、P、Q,這四個數(shù)中絕對值最小的數(shù)對應的點是()A.點M B.點N C.點P D.點Q解析:B【解析】【分析】【詳解】∵實數(shù)-3,x,3,y在數(shù)軸上的對應點分別為M、N、P、Q,∴原點在點P與N之間,∴這四個數(shù)中絕對值最小的數(shù)對應的點是點N.故選B.19.如果一個角的補角是130°,那么這個角的余角的度數(shù)是()A.30° B.40° C.50° D.90°解析:B【解析】【分析】直接利用互補的定義得出這個角的度數(shù),進而利用互余的定義得出答案.【詳解】解:∵一個角的補角是130,∴這個角為:50,∴這個角的余角的度數(shù)是:40.故選:B.【點睛】此題主要考查了余角和補角,正確把握相關定義是解題關鍵.20.已知max表示取三個數(shù)中最大的那個數(shù),例如:當x=9時,max=81.當max時,則x的值為()A. B. C. D.解析:C【解析】【分析】利用max的定義分情況討論即可求解.【詳解】解:當max時,x≥0①=,解得:x=,此時>x>x2,符合題意;②x2=,解得:x=;此時>x>x2,不合題意;③x=,>x>x2,不合題意;故只有x=時,max.故選:C.【點睛】此題主要考查了新定義,正確理解題意分類討論是解題關鍵.21.球從空中落到地面所用的時間t(秒)和球的起始高度h(米)之間有關系式,若球的起始高度為102米,則球落地所用時間與下列最接近的是()A.3秒 B.4秒 C.5秒 D.6秒解析:C【解析】【分析】根據(jù)題意直接把高度為102代入即可求出答案.【詳解】由題意得,當h=102時,t==20.25=25且20.25<20.4<25<<4.5<t<5與t最接近的整數(shù)是5.故選C.【點睛】本題考查的是估算問題,解題關鍵是針對其范圍的估算.22.下列判斷正確的是()A.有理數(shù)的絕對值一定是正數(shù).B.如果兩個數(shù)的絕對值相等,那么這兩個數(shù)相等.C.如果一個數(shù)是正數(shù),那么這個數(shù)的絕對值是它本身.D.如果一個數(shù)的絕對值是它本身,那么這個數(shù)是正數(shù).解析:C【解析】試題解析:A∵0的絕對值是0,故本選項錯誤.B∵互為相反數(shù)的兩個數(shù)的絕對值相等,故本選項正確.C如果一個數(shù)是正數(shù),那么這個數(shù)的絕對值是它本身.D∵0的絕對值是0,故本選項錯誤.故選C.23.如圖,已知在一條直線上,是銳角,則的余角是()A. B.C. D.解析:C【解析】【分析】由圖知:∠1和∠2互補,可得∠1+∠2=180°,即(∠1+∠2)=90°①;而∠1的余角為90°-∠1②,可將①中的90°所表示的(∠1+∠2)代入②中,即可求得結果.【詳解】解:由圖知:∠1+∠2=180°,∴(∠1+∠2)=90°,∴90°-∠1=(∠1+∠2)-∠1=(∠2-∠1).故選:C.【點睛】此題綜合考查余角與補角,難點在于將∠1+∠2=180°進行適當?shù)淖冃危瑥亩c∠1的余角產生聯(lián)系.24.計算的結果是()A.-8 B.8 C.2 D.-2解析:C【解析】【分析】根據(jù)有理數(shù)加法法則計算即可得答案.【詳解】=-=2故選:C.【點睛】本題考查有理數(shù)加法,同號兩數(shù)相加,取相同的符號,并把絕對值相加;異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;互為相反數(shù)的兩個數(shù)相加得0;一個數(shù)與0相加,仍得這個數(shù);熟練掌握有理數(shù)加法法則是解題關鍵.25.在四個數(shù)中,屬于無理數(shù)的是()A. B. C. D.解析:B【解析】【分析】根據(jù)無理數(shù)為無限不循環(huán)小數(shù)、開方開不盡的數(shù)、含π的數(shù)判斷即可.【詳解】0.23是有限小數(shù),是有理數(shù),不符合題意,是開方開不盡的數(shù),是無理數(shù),符合題意,-2是整數(shù),是有理數(shù),不符合題意,是分數(shù),是有理數(shù),不符合題意,故選:B.【點睛】本題考查無理數(shù)概念,無理數(shù)為無限不循環(huán)小數(shù)、開方開不盡的數(shù)、含π的數(shù),熟練掌握無理數(shù)的定義
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 12 家鄉(xiāng)的喜與憂(教學設計)2023-2024學年統(tǒng)編版道德與法治四年級下冊
- 專題十八 做情緒情感的主人(教學設計)2024年七年級下冊道德與法治部編版下冊
- 四平職業(yè)大學《DSP應用技術》2023-2024學年第二學期期末試卷
- 廣州體育學院《商業(yè)空間室內設計》2023-2024學年第二學期期末試卷
- 湖北民族大學《金融營銷》2023-2024學年第二學期期末試卷
- 鄭州城市職業(yè)學院《操作系統(tǒng)原理理論》2023-2024學年第二學期期末試卷
- 華南師范大學《空間分析與應用》2023-2024學年第二學期期末試卷
- 9 獵人海力布(教學設計)-2024-2025學年語文五年級上冊統(tǒng)編版
- 大量程固體物位儀表項目效益評估報告
- 鹽城師范學院《研究性學習理論與實踐》2023-2024學年第二學期期末試卷
- 國家自然科學基金申請經(jīng)驗交流課件
- 領子的分類課件
- 農產品的互聯(lián)網(wǎng)營銷課件
- 三年級下冊數(shù)學課件 兩位數(shù)除兩、三位數(shù) 滬教版 (共15張PPT)
- 《六大茶類》講義
- Unit 2 Listening and speaking 課件-高中英語人教版(2019)選擇性必修第二冊
- X會計師事務所的J城投公司發(fā)債審計項目研究
- 中國傳媒大學全媒體新聞編輯:案例教學-課件-全媒體新聞編輯:案例教學-第7講
- 生理學泌尿系統(tǒng)6學時課件
- 數(shù)據(jù)結構英文教學課件:chapter1 Introduction
- 人教三年級數(shù)學下冊表格式全冊
評論
0/150
提交評論