初中七年級(jí)下冊(cè)期末幾何壓軸題數(shù)學(xué)附答案(一)_第1頁
初中七年級(jí)下冊(cè)期末幾何壓軸題數(shù)學(xué)附答案(一)_第2頁
初中七年級(jí)下冊(cè)期末幾何壓軸題數(shù)學(xué)附答案(一)_第3頁
初中七年級(jí)下冊(cè)期末幾何壓軸題數(shù)學(xué)附答案(一)_第4頁
初中七年級(jí)下冊(cè)期末幾何壓軸題數(shù)學(xué)附答案(一)_第5頁
已閱讀5頁,還剩44頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

一、解答題1.在平面直角坐標(biāo)系xOy中,對(duì)于給定的兩點(diǎn)P,Q,若存在點(diǎn)M,使得△MPQ的面積等于1,即S△MPQ=1,則稱點(diǎn)M為線段PQ的“單位面積點(diǎn)”,解答下列問題:如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(1,0).(1)在點(diǎn)A(1,2),B(﹣1,1),C(﹣1,﹣2),D(2,﹣4)中,線段OP的“單位面積點(diǎn)”是;(2)已知點(diǎn)E(0,3),F(xiàn)(0,4),將線段OP沿y軸向上平移t(t>0)個(gè)單位長度,使得線段EF上存在線段OP的“單位面積點(diǎn)”,直接寫出t的取值范圍.(3)已知點(diǎn)Q(1,﹣2),H(0,﹣1),點(diǎn)M,N是線段PQ的兩個(gè)“單位面積點(diǎn)”,點(diǎn)M在HQ的延長線上,若S△HMN≥S△PQN,求出點(diǎn)N縱坐標(biāo)的取值范圍.2.已知:如圖(1)直線AB、CD被直線MN所截,∠1=∠2.(1)求證:AB//CD;(2)如圖(2),點(diǎn)E在AB,CD之間的直線MN上,P、Q分別在直線AB、CD上,連接PE、EQ,PF平分∠BPE,QF平分∠EQD,則∠PEQ和∠PFQ之間有什么數(shù)量關(guān)系,請(qǐng)直接寫出你的結(jié)論;(3)如圖(3),在(2)的條件下,過P點(diǎn)作PH//EQ交CD于點(diǎn)H,連接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度數(shù).3.已知:直線AB∥CD,直線MN分別交AB、CD于點(diǎn)E、F,作射線EG平分∠BEF交CD于G,過點(diǎn)F作FH⊥MN交EG于H.(1)當(dāng)點(diǎn)H在線段EG上時(shí),如圖1①當(dāng)∠BEG=時(shí),則∠HFG=.②猜想并證明:∠BEG與∠HFG之間的數(shù)量關(guān)系.(2)當(dāng)點(diǎn)H在線段EG的延長線上時(shí),請(qǐng)先在圖2中補(bǔ)全圖形,猜想并證明:∠BEG與∠HFG之間的數(shù)量關(guān)系.4.如圖,直線AB∥直線CD,線段EF∥CD,連接BF、CF.(1)求證:∠ABF+∠DCF=∠BFC;(2)連接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求證:CE平分∠BCD;(3)在(2)的條件下,G為EF上一點(diǎn),連接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度數(shù).5.(1)如圖①,若∠B+∠D=∠E,則直線AB與CD有什么位置關(guān)系?請(qǐng)證明(不需要注明理由).(2)如圖②中,AB//CD,又能得出什么結(jié)論?請(qǐng)直接寫出結(jié)論.(3)如圖③,已知AB//CD,則∠1+∠2+…+∠n-1+∠n的度數(shù)為.6.已知,,.(1)如圖1,求證:;(2)如圖2,作的平分線交于點(diǎn),點(diǎn)為上一點(diǎn),連接,若的平分線交線段于點(diǎn),連接,若,過點(diǎn)作交的延長線于點(diǎn),且,求的度數(shù).7.據(jù)說,我國著名數(shù)學(xué)家華羅庚在一次訪問途中,看到飛機(jī)鄰座的乘客閱讀的雜志上有一道智力題:一個(gè)數(shù)32768,它是一個(gè)正數(shù)的立方,希望求它的立方根,華羅庚不假思索給出了答案,鄰座乘客非常驚奇,很想得知其中的奧秘,你知道華羅庚是怎樣準(zhǔn)確計(jì)算出的嗎?請(qǐng)按照下面的問題試一試:(1)由,因?yàn)椋?qǐng)確定是______位數(shù);(2)由32768的個(gè)位上的數(shù)是8,請(qǐng)確定的個(gè)位上的數(shù)是________,劃去32768后面的三位數(shù)768得到32,因?yàn)?,?qǐng)確定的十位上的數(shù)是_____________(3)已知13824和分別是兩個(gè)數(shù)的立方,仿照上面的計(jì)算過程,請(qǐng)計(jì)算:=____;8.先閱讀材料,再解答問題:我國數(shù)學(xué)家華羅庚在一次出國訪問途中,看到飛機(jī)上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根,華羅庚脫口而出,給出了答案,眾人十分驚訝,忙問計(jì)算的奧妙,你知道華羅庚怎樣迅速而準(zhǔn)確地計(jì)算出結(jié)果嗎?請(qǐng)你按下面的步驟也試一試:(1)我們知道,,那么,請(qǐng)你猜想:59319的立方根是_______位數(shù)(2)在自然數(shù)1到9這九個(gè)數(shù)字中,________,________,________.猜想:59319的個(gè)位數(shù)字是9,則59319的立方根的個(gè)位數(shù)字是________.(3)如果劃去59319后面的三位“319”得到數(shù)59,而,,由此可確定59319的立方根的十位數(shù)字是________,因此59319的立方根是________.(4)現(xiàn)在換一個(gè)數(shù)103823,你能按這種方法得出它的立方根嗎?9.如果有一列數(shù),從這列數(shù)的第2個(gè)數(shù)開始,每一個(gè)數(shù)與它的前一個(gè)數(shù)的比等于同一個(gè)非零的常數(shù),這樣的一列數(shù)就叫做等比數(shù)列(GeometricSequences).這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母q表示(q≠0).(1)觀察一個(gè)等比列數(shù)1,,…,它的公比q=;如果an(n為正整數(shù))表示這個(gè)等比數(shù)列的第n項(xiàng),那么a18=,an=;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步驟進(jìn)行:令S=1+2+4+8+16+…+230…①等式兩邊同時(shí)乘以2,得2S=2+4+8+16++32+…+231…②由②﹣①式,得2S﹣S=231﹣1即(2﹣1)S=231﹣1所以請(qǐng)根據(jù)以上的解答過程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若數(shù)列a1,a2,a3,…,an,從第二項(xiàng)開始每一項(xiàng)與前一項(xiàng)之比的常數(shù)為q,請(qǐng)用含a1,q,n的代數(shù)式表示an;如果這個(gè)常數(shù)q≠1,請(qǐng)用含a1,q,n的代數(shù)式表示a1+a2+a3+…+an.10.請(qǐng)觀察下列等式,找出規(guī)律并回答以下問題.,,,,……(1)按照這個(gè)規(guī)律寫下去,第5個(gè)等式是:______;第n個(gè)等式是:______.(2)①計(jì)算:.②若a為最小的正整數(shù),,求:.11.閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,于是小明用來表示的小數(shù)部分,事實(shí)上,小明的表示方法是有道理的,因?yàn)榈恼麛?shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是的小數(shù)部分,又例如:∵,即,∴的整數(shù)部分為2,小數(shù)部分為。請(qǐng)解答(1)的整數(shù)部分是______,小數(shù)部分是_______。(2)如果的小數(shù)部分為a,的整數(shù)部分為b,求的值。(3)已知x是的整數(shù)部分,y是其小數(shù)部分,直接寫出的值.12.據(jù)說,我國著名數(shù)學(xué)家華羅庚在一次訪問途中,看到飛機(jī)鄰座的乘客閱讀的雜志上有一道智力題:一個(gè)數(shù)32768,它是一個(gè)正數(shù)的立方,希望求它的立方根,華羅庚不假思索給出了答案,鄰座乘客非常驚奇,很想得知其中的奧秘,你知道華羅庚是怎樣準(zhǔn)確計(jì)算出的嗎?請(qǐng)按照下面的問題試一試:(1)由,因?yàn)椋?qǐng)確定是______位數(shù);(2)由32768的個(gè)位上的數(shù)是8,請(qǐng)確定的個(gè)位上的數(shù)是________,劃去32768后面的三位數(shù)768得到32,因?yàn)?,?qǐng)確定的十位上的數(shù)是_____________(3)已知13824和分別是兩個(gè)數(shù)的立方,仿照上面的計(jì)算過程,請(qǐng)計(jì)算:=____;13.如圖,已知,,且滿足.(1)求、兩點(diǎn)的坐標(biāo);(2)點(diǎn)在線段上,、滿足,點(diǎn)在軸負(fù)半軸上,連交軸的負(fù)半軸于點(diǎn),且,求點(diǎn)的坐標(biāo);(3)平移直線,交軸正半軸于,交軸于,為直線上第三象限內(nèi)的點(diǎn),過作軸于,若,且,求點(diǎn)的坐標(biāo).14.如圖1,//,點(diǎn)、分別在、上,點(diǎn)在直線、之間,且.(1)求的值;(2)如圖2,直線分別交、的角平分線于點(diǎn)、,直接寫出的值;(3)如圖3,在內(nèi),;在內(nèi),,直線分別交、分別于點(diǎn)、,且,直接寫出的值.15.如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn),其中滿足,D為直線AB與軸的交點(diǎn),C為線段AB上一點(diǎn),其縱坐標(biāo)為.(1)求的值;(2)當(dāng)為何值時(shí),和面積的相等;(3)若點(diǎn)C坐標(biāo)為(-2,1),點(diǎn)M(m,-3)在第三象限內(nèi),滿足,求m的取值范圍.(注:表示的面積)16.(發(fā)現(xiàn)問題)已知,求的值.方法一:先解方程組,得出,的值,再代入,求出的值.方法二:將①②,求出的值.(提出問題)怎樣才能得到方法二呢?(分析問題)為了得到方法二,可以將①②,可得.令等式左邊,比較系數(shù)可得,求得.(解決問題)(1)請(qǐng)你選擇一種方法,求的值;(2)對(duì)于方程組利用方法二的思路,求的值;(遷移應(yīng)用)(3)已知,求的范圍.17.在平面直角坐標(biāo)系中,已知點(diǎn),,連接,將向下平移6個(gè)單位得線段,其中點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn).(1)填空:點(diǎn)的坐標(biāo)為______,線段平移到掃過的面積為______.(2)若點(diǎn)是軸上的動(dòng)點(diǎn),連接.①如圖,當(dāng)點(diǎn)在軸正半軸時(shí),線段與線段相交于點(diǎn),用等式表示三角形的面積與三角形的面積之間的關(guān)系,并說明理由.②當(dāng)將四邊形的面積分成1∶3兩部分時(shí),求點(diǎn)的坐標(biāo).18.在平面直角坐標(biāo)系中,點(diǎn),滿足關(guān)系式.(1)求,的值;(2)若點(diǎn)滿足的面積等于,求的值;(3)線段與軸交于點(diǎn),動(dòng)點(diǎn)從點(diǎn)出發(fā),在軸上以每秒個(gè)單位長度的速度向下運(yùn)動(dòng),動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長度的速度向右運(yùn)動(dòng),問為何值時(shí)有,請(qǐng)直接寫出的值.19.五一節(jié)前,某商店擬購進(jìn)A、B兩種品牌的電風(fēng)扇進(jìn)行銷售,已知購進(jìn)3臺(tái)A種品牌電風(fēng)扇所需費(fèi)用與購進(jìn)2臺(tái)B種品牌電風(fēng)扇所需費(fèi)用相同,購進(jìn)1臺(tái)A種品牌電風(fēng)扇與2臺(tái)B種品牌電風(fēng)扇共需費(fèi)用400元.(1)求A、B兩種品牌電風(fēng)扇每臺(tái)的進(jìn)價(jià)分別是多少元?(2)銷售時(shí),該商店將A種品牌電風(fēng)扇定價(jià)為180元/臺(tái),B種品牌電風(fēng)扇定價(jià)為250元/臺(tái),商店擬用1000元購進(jìn)這兩種風(fēng)扇(1000元?jiǎng)偤萌坑猛辏?,為能在銷售完這兩種電風(fēng)扇后獲得最大的利潤,該商店應(yīng)采用哪種進(jìn)貨方案?20.如圖,和的度數(shù)滿足方程組,且,.(1)用解方程的方法求和的度數(shù);(2)求的度數(shù).21.對(duì)于不為0的一位數(shù)和一個(gè)兩位數(shù),將數(shù)放置于兩位數(shù)之前,或者將數(shù)放置于兩位數(shù)的十位數(shù)字與個(gè)位數(shù)字之間就可以得到兩個(gè)新的三位數(shù),將較大三位數(shù)減去較小三位數(shù)的差與15的商記為.例如:當(dāng),時(shí),可以得到168,618.較大三位數(shù)減去較小三位數(shù)的差為,而,所以.(1)計(jì)算:.(2)若是一位數(shù),是兩位數(shù),的十位數(shù)字為(,為自然數(shù)),個(gè)位數(shù)字為8,當(dāng)時(shí),求出所有可能的,的值.22.我市某包裝生產(chǎn)企業(yè)承接了一批上海世博會(huì)的禮品盒制作業(yè)務(wù),為了確保質(zhì)量,該企業(yè)進(jìn)行試生產(chǎn).他們購得規(guī)格是的標(biāo)準(zhǔn)板材作為原材料,每張標(biāo)準(zhǔn)板材再按照裁法一或裁法二裁下A型與B型兩種板材.如圖甲,(單位:)(1)列出方程(組),求出圖甲中a與b的值;(2)在試生產(chǎn)階段,若將30張標(biāo)準(zhǔn)板材用裁法一裁剪,4張標(biāo)準(zhǔn)板材用裁法二裁剪,再將得到的A型與B型板材做側(cè)面和底面,做成圖乙的豎式與橫式兩種禮品盒.①兩種裁法共產(chǎn)生A型板材________張,B型板材_______張;②已知①中的A型板材和B型板材恰好做成豎式有蓋禮品盒x個(gè),橫式無蓋禮品盒的y個(gè),求x、y的值.23.如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(a,0),B(0,b),其中a,b滿足.將點(diǎn)B向右平移24個(gè)單位長度得到點(diǎn)C.點(diǎn)D,E分別為線段BC,OA上一動(dòng)點(diǎn),點(diǎn)D從點(diǎn)C以2個(gè)單位長度/秒的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)O以3個(gè)單位長度/秒的速度向點(diǎn)A運(yùn)動(dòng),在D,E運(yùn)動(dòng)的過程中,DE交四邊形BOAC的對(duì)角線OC于點(diǎn)F.設(shè)運(yùn)動(dòng)的時(shí)間為t秒(0<t<10),四邊形BOED的面積記為S四邊形BOED(以下面積的表示方式相同).(1)求點(diǎn)A和點(diǎn)C的坐標(biāo);(2)若S四邊形BOED≥S四邊形ACDE,求t的取值范圍;(3)求證:在D,E運(yùn)動(dòng)的過程中,S△OEF>S△DCF總成立.24.某校為了豐富同學(xué)們的課外活動(dòng),決定給全校20個(gè)班每班配4副乒乓球拍和若干乒乓球,兩家體育用品商店對(duì)同一款乒乓球拍和乒乓球推出讓利活動(dòng),甲商店買一副乒乓球拍送10個(gè)乒乓球,乙商店所有商品均打九折(按標(biāo)價(jià)的90%)銷售,已知2副乒乓球拍和10個(gè)乒乓球110元,3副乒乓球拍和20個(gè)乒乓球170元。請(qǐng)解答下列問題:(1)求每副乒乓球拍和每個(gè)乒乓球的單價(jià)為多少元.(2)若每班配4副乒乓球拍和40個(gè)乒乓球,則甲商店的費(fèi)用為元,乙商店的費(fèi)用為元.(3)每班配4副乒乓球拍和m(m>100)個(gè)乒乓球則甲商店的費(fèi)用為元,乙商店的費(fèi)用為元.(4)若該校只在一家商店購買,你認(rèn)為在哪家超市購買更劃算?25.閱讀材料:關(guān)于x,y的二元一次方程ax+by=c有一組整數(shù)解,則方程ax+by=c的全部整數(shù)解可表示為(t為整數(shù)).問題:求方程7x+19y=213的所有正整數(shù)解.小明參考閱讀材料,解決該問題如下:解:該方程一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因?yàn)榻獾茫驗(yàn)閠為整數(shù),所以t=0或-1.所以該方程的正整數(shù)解為和.(1)方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則=;(2)請(qǐng)你參考小明的解題方法,求方程2x+3y=24的全部正整數(shù)解;(3)方程19x+8y=1908的正整數(shù)解有多少組?請(qǐng)直接寫出答案.26.對(duì)、定義了一種新運(yùn)算T,規(guī)定(其中,均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:,已知,.(1)求,的值;(2)求.(3)若關(guān)于的不等式組恰好有4個(gè)整數(shù)解,求的取值范圍.27.在平面直角坐標(biāo)系中,點(diǎn),,,且,,滿足.(1)請(qǐng)用含的式子分別表示,兩點(diǎn)的坐標(biāo);(2)當(dāng)實(shí)數(shù)變化時(shí),判斷的面積是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍;(3)如圖,已知線段與軸相交于點(diǎn),直線與直線交于點(diǎn),若,求實(shí)數(shù)的取值范圍.28.中國傳統(tǒng)節(jié)日“端午節(jié)”期間,某商場(chǎng)開展了“歡度端午,回饋顧客”的讓利促銷活動(dòng),對(duì)部分品牌的粽子進(jìn)行了打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買5盒甲品牌粽子和4盒乙品牌粽子需520元.(1)打折前,每盒甲、乙品牌粽子分別為多少元?(2)在商場(chǎng)讓利促銷活動(dòng)期間,某敬老院準(zhǔn)備購買甲、乙兩種品牌粽子共40盒,總費(fèi)用不超過2300元,問敬老院最多可購買多少盒乙品牌粽子?29.如圖1,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),邊長為2的正方形ABCD(點(diǎn)D與點(diǎn)O重合)和邊長為4的正方形EFGH的邊CO和GH都在x軸上,且點(diǎn)H坐標(biāo)為(7,0).正方形ABCD以3個(gè)單位長度/秒的速度沿著x軸向右運(yùn)動(dòng),記正方形ABCD和正方形EFGH重疊部分的面積為S,假設(shè)運(yùn)動(dòng)時(shí)間為t秒,且t<4.(1)點(diǎn)F的坐標(biāo)為;(2)如圖2,正方形ABCD向右運(yùn)動(dòng)的同時(shí),動(dòng)點(diǎn)P在線段FE上,以1個(gè)單位長度/秒的速度從F到E運(yùn)動(dòng).連接AP,AE.①求t為何值時(shí),AP所在直線垂直于x軸;②求t為何值時(shí),S=S△APE.30.我區(qū)防汛指揮部在一河道的危險(xiǎn)地帶兩岸各安置一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖1,燈光射線自順時(shí)針旋轉(zhuǎn)至便立即逆時(shí)針旋轉(zhuǎn)至,如此循環(huán)燈光射線自順時(shí)針旋轉(zhuǎn)至便立即逆時(shí)針旋轉(zhuǎn)至,如此循環(huán).兩燈交叉照射且不間斷巡視.若燈轉(zhuǎn)動(dòng)的速度是度/秒,燈轉(zhuǎn)動(dòng)的速度是度/秒,且,滿足.若這一帶江水兩岸河堤相互平行,即,且.根據(jù)相關(guān)信息,解答下列問題.(1)__________,__________.(2)若燈的光射線先轉(zhuǎn)動(dòng)24秒,燈的光射線才開始轉(zhuǎn)動(dòng),在燈的光射線到達(dá)之前,燈轉(zhuǎn)動(dòng)幾秒,兩燈的光射線互相平行?(3)如圖2,若兩燈同時(shí)開始轉(zhuǎn)動(dòng)照射,在燈的光射線到達(dá)之前,若兩燈射出的光射線交于點(diǎn),過點(diǎn)作交于點(diǎn),則在轉(zhuǎn)動(dòng)的過程中,與間的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出這兩角間的數(shù)量關(guān)系;若改變,請(qǐng)求出各角的取值范圍.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、解答題1.(1),;(2)或;(3)見解析【分析】(1)分別根據(jù)三角形的面積計(jì)算△OPA,△DPB,△DPC,△OPD的面積即可;(2)分線段OP在線段EF下方和線段OP在線段EF上方分別求解;(3)畫出圖形,根據(jù)S△PQN=1,得到S△HMN≥,分當(dāng)xN=0時(shí),當(dāng)xN=2時(shí),分別結(jié)合S△HMN≥,得到不等式,求出N點(diǎn)縱坐標(biāo)的范圍.【詳解】解:(1)S△OPA=,則點(diǎn)A是線段OP的“單位面積點(diǎn)”,S△OPB=,則點(diǎn)B不是線段OP的“單位面積點(diǎn)”,S△OPC=,則點(diǎn)C是線段OP的“單位面積點(diǎn)”,S△OPD=,則點(diǎn)D不是線段OP的“單位面積點(diǎn)”,(2)設(shè)點(diǎn)G是線段OP的“單位面積點(diǎn)”,則S△OPG=1,∵點(diǎn)E的坐標(biāo)為(0,3),點(diǎn)F的坐標(biāo)為(0,4),且點(diǎn)G在線段EF上,∴點(diǎn)G的橫坐標(biāo)為0,∵S△OPG=1,線段OP為y軸向上平移t(t>0)個(gè)單位長度,當(dāng)為單位面積點(diǎn)時(shí),當(dāng)為單位面積點(diǎn)時(shí),綜上所述:1≤t≤2或5≤t≤6;(3)∵M(jìn),N是線段PQ的兩個(gè)單位面積點(diǎn),∴S△PQM=1,S△PQN=1,∵P(1,0),Q(1,-2),∴PQ=2,∴M,N的橫坐標(biāo)為0或2,∵點(diǎn)M在HQ的延長線上,∴點(diǎn)M的橫坐標(biāo)為xM=2,∵S△HMN≥S△PQN,∴S△HMN≥,當(dāng)xN=0時(shí),S△HMN=,則,∴或;當(dāng)xN=2時(shí),S△HMN=,則,∴或.【點(diǎn)睛】本題主要考查三角形的面積公式,并且能夠理解單位面積點(diǎn)的定義,解題關(guān)鍵是找到單位面積點(diǎn)的軌跡進(jìn)行求解.2.(1)見解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先證明∠1=∠3,易證得AB//CD;(2)如圖2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行線的性質(zhì)即可證明;(3)如圖3中,設(shè)∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,想辦法構(gòu)建方程即可解決問題;【詳解】(1)如圖1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)結(jié)論:如圖2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可證:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,∴∠1+∠4+∠EQD+∠BPE=2×180°,即∠PEQ+2(∠FQD+∠BPF)=360°,∴∠PEQ+2∠PFQ=360°.(3)如圖3中,設(shè)∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,∵EQ//PH,∴∠EQC=∠PHQ=x,∴x+10y=180°,∵AB//CD,∴∠BPH=∠PHQ=x,∵PF平分∠BPE,∴∠EPQ+∠FPQ=∠FPH+∠BPH,∴∠FPH=y(tǒng)+z﹣x,∵PQ平分∠EPH,∴Z=y(tǒng)+y+z﹣x,∴x=2y,∴12y=180°,∴y=15°,∴x=30°,∴∠PHQ=30°.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),角平分線的定義等知識(shí).(2)中能正確作出輔助線是解題的關(guān)鍵;(3)中能熟練掌握相關(guān)性質(zhì),找到角度之間的關(guān)系是解題的關(guān)鍵.3.(1)①18°;②2∠BEG+∠HFG=90°,證明見解析;(2)2∠BEG-∠HFG=90°證明見解析部【分析】(1)①證明2∠BEG+∠HFG=90°,可得結(jié)論.②利用平行線的性質(zhì)證明即可.(2)如圖2中,結(jié)論:2∠BEG-∠HFG=90°.利用平行線的性質(zhì)證明即可.【詳解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案為:18°.②結(jié)論:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如圖2中,結(jié)論:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【點(diǎn)睛】本題考查平行線的性質(zhì),角平分線的定義等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.4.(1)證明見解析;(2)證明見解析;(3)∠FBE=35°.【分析】(1)根據(jù)平行線的性質(zhì)得出∠ABF=∠BFE,∠DCF=∠EFC,進(jìn)而解答即可;(2)由(1)的結(jié)論和垂直的定義解答即可;(3)由(1)的結(jié)論和三角形的角的關(guān)系解答即可.【詳解】證明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)設(shè)∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【點(diǎn)睛】本題主要考查平行線的性質(zhì),解決本題的關(guān)鍵是根據(jù)平行線的性質(zhì)解答.5.(1)AB//CD,證明見解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)?180°【分析】(1)過點(diǎn)E作EF//AB,利用平行線的性質(zhì)則可得出∠B=∠BEF,再由已知及平行線的判定即可得出AB∥CD;(2)如圖,過點(diǎn)E作EM∥AB,過點(diǎn)F作FN∥AB,過點(diǎn)G作GH∥AB,根據(jù)探究(1)的證明過程及方法,可推出∠E+∠G=∠B+∠F+∠D,則可由此得出規(guī)律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)如圖,過點(diǎn)M作EF∥AB,過點(diǎn)N作GH∥AB,則可由平行線的性質(zhì)得出∠1+∠2+∠MNG=180°×2,依此即可得出此題結(jié)論.【詳解】解:(1)過點(diǎn)E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(內(nèi)錯(cuò)角相等,兩直線平行).∴AB//CD.(2)過點(diǎn)E作EM∥AB,過點(diǎn)F作FN∥AB,過點(diǎn)G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:開口朝左的所有角度之和與開口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.故答案為:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.(3)如圖,過點(diǎn)M作EF∥AB,過點(diǎn)N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG=180°×2,依次類推:∠1+∠2+…+∠n-1+∠n=(n-1)?180°.故答案為:(n-1)?180°.【點(diǎn)睛】本題考查了平行線的性質(zhì)與判定,屬于基礎(chǔ)題,關(guān)鍵是過E點(diǎn)作AB(或CD)的平行線,把復(fù)雜的圖形化歸為基本圖形.6.(1)見解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過點(diǎn)E作,延長DC至Q,過點(diǎn)M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的含義得出,然后根據(jù)平行線的性質(zhì)及角平分線的定義可推出;設(shè),根據(jù)角的和差可得出,結(jié)合已知條件可求得,最后根據(jù)垂線的含義及平行線的性質(zhì),即可得出答案.【詳解】(1)證明:;(2)過點(diǎn)E作,延長DC至Q,過點(diǎn)M作,,,AF平分FH平分設(shè),.【點(diǎn)睛】本題考查了平行線的判定及性質(zhì),角平分線的定義,能靈活根據(jù)平行線的性質(zhì)和判定進(jìn)行推理是解此題的關(guān)鍵.7.(1)兩;(2)2,3;(3)24,-48.【分析】(1)根據(jù)題中所給的分析方法先求出這32768的立方根都是兩位數(shù);(2)繼續(xù)分析求出個(gè)位數(shù)和十位數(shù)即可;(3)利用(1)(2)中材料中的過程進(jìn)行分析可得結(jié)論.【詳解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10<<100,∴是兩位數(shù);故答案為:兩;(2)∵只有個(gè)位數(shù)是2的立方數(shù)是個(gè)位數(shù)是8,∴的個(gè)位上的數(shù)是2劃去32768后面的三位數(shù)768得到32,因?yàn)?3=27,43=64,∵27<32<64,∴30<<40.∴的十位上的數(shù)是3.故答案為:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10<<100,∴是兩位數(shù);∵只有個(gè)位數(shù)是4的立方數(shù)是個(gè)位數(shù)是4,∴的個(gè)位上的數(shù)是4劃去13824后面的三位數(shù)824得到13,因?yàn)?3=8,33=27,∵8<13<27,∴20<<30.∴=24;由103=1000,1003=1000000,1000<110592<1000000,∴10<<100,∴是兩位數(shù);∵只有個(gè)位數(shù)是8的立方數(shù)是個(gè)位數(shù)是2,∴的個(gè)位上的數(shù)是8,劃去110592后面的三位數(shù)592得到110,因?yàn)?3=64,53=125,∵64<110<125,∴40<<50.∴=-48;故答案為:24,-48.【點(diǎn)睛】此題考查立方根,解題關(guān)鍵在于理解一個(gè)數(shù)的立方的個(gè)位數(shù)就是這個(gè)數(shù)的個(gè)位數(shù)的立方的個(gè)位數(shù).8.(1)兩;(2)125,343,729,9;(3)3,39;(4)47【分析】(1)根據(jù)夾逼法和立方根的定義進(jìn)行解答;(2)先分別求得1至9中奇數(shù)的立方,然后根據(jù)末位數(shù)字是幾進(jìn)行判斷即可;(3)先利用(2)中的方法判斷出個(gè)數(shù)數(shù)字,然后再利用夾逼法判斷出十位數(shù)字即可;(4)利用(3)中的方法確定出個(gè)位數(shù)字和十位數(shù)字即可.【詳解】(1)∵1000<59319<1000000,∴59319的立方根是兩位數(shù);(2)∵125,343,729,∴59319的個(gè)位數(shù)字是9,則59319的立方根的個(gè)位數(shù)字是9;(3)∵,且59319的立方根是兩位數(shù),∴59319的立方根的十位數(shù)字是3,又∵59319的立方根的個(gè)位數(shù)字是9,∴59319的立方根是39;(4)∵1000<103823<1000000,∴103823的立方根是兩位數(shù);∵125,343,729,∴103823的個(gè)位數(shù)字是3,則103823的立方根的個(gè)位數(shù)字是7;∵,且103823的立方根是兩位數(shù),∴103823的立方根的十位數(shù)字是4,又∵103823的立方根的個(gè)位數(shù)字是7,∴103823的立方根是47.【點(diǎn)睛】考查了立方根的概念和求法,解題關(guān)鍵是理解一個(gè)數(shù)的立方的個(gè)位數(shù)就是這個(gè)數(shù)的個(gè)位數(shù)的立方的個(gè)位數(shù).9.(1),,;(2);(3)【分析】(1)÷1即可求出q,根據(jù)已知數(shù)的特點(diǎn)求出a18和an即可;(2)根據(jù)已知先求出3S,再相減,即可得出答案;(3)根據(jù)(1)(2)的結(jié)果得出規(guī)律即可.【詳解】解:(1)÷1=,a18=1×()17=,an=1×()n﹣1=,故答案為:,,;(2)設(shè)S=3+32+33+…+323,則3S=32+33+…+323+324,∴2S=324﹣3,∴S=(3)an=a1?qn﹣1,a1+a2+a3+…+an=.【點(diǎn)睛】本題考查了整式的混合運(yùn)算的應(yīng)用,主要考查學(xué)生的理解能力和閱讀能力,題目是一道比較好的題目,有一定的難度.10.(1),;(2)①;②【分析】(1)根據(jù)規(guī)律可得第5個(gè)算式;根據(jù)規(guī)律可得第n個(gè)算式;(2)①根據(jù)運(yùn)算規(guī)律可得結(jié)果.②利用非負(fù)數(shù)的性質(zhì)求出與的值,代入原式后拆項(xiàng)變形,抵消即可得到結(jié)果.【詳解】(1)根據(jù)規(guī)律得:第5個(gè)等式是,第n個(gè)等式是;(2)①,,,;②為最小的正整數(shù),,,,原式,,,,.【點(diǎn)睛】本題主要考查了數(shù)字的變化規(guī)律,發(fā)現(xiàn)規(guī)律,運(yùn)用規(guī)律是解答此題的關(guān)鍵.11.(1)3;﹣3;(2)4;(3)x﹣y=7﹣.【分析】(1)由3<<4可得答案;(2)由2<<3知a=﹣2,由6<<7知b=6,據(jù)此求解可得;(3)由2<<3知5<3+<6,據(jù)此得出x、y的值代入計(jì)算可得.【詳解】(1)∵3<<4,∴的整數(shù)部分是3,小數(shù)部分是﹣3;故答案為3;﹣3.(2)∵2<<3,∴a=﹣2,∵6<<7,∴b=6,∴a+b﹣=﹣2+6﹣=4.(3)∵2<<3,∴5<3+<6,∴3+的整數(shù)部分為x=5,小數(shù)部分為y=3+﹣5=﹣2.則x﹣y=5﹣(﹣2)=5﹣+2=7﹣.【點(diǎn)睛】本題考查了估算無理數(shù)的大小,解決本題的關(guān)鍵是熟記估算無理數(shù)的大?。?2.(1)兩;(2)2,3;(3)24,-48.【分析】(1)根據(jù)題中所給的分析方法先求出這32768的立方根都是兩位數(shù);(2)繼續(xù)分析求出個(gè)位數(shù)和十位數(shù)即可;(3)利用(1)(2)中材料中的過程進(jìn)行分析可得結(jié)論.【詳解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10<<100,∴是兩位數(shù);故答案為:兩;(2)∵只有個(gè)位數(shù)是2的立方數(shù)是個(gè)位數(shù)是8,∴的個(gè)位上的數(shù)是2劃去32768后面的三位數(shù)768得到32,因?yàn)?3=27,43=64,∵27<32<64,∴30<<40.∴的十位上的數(shù)是3.故答案為:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10<<100,∴是兩位數(shù);∵只有個(gè)位數(shù)是4的立方數(shù)是個(gè)位數(shù)是4,∴的個(gè)位上的數(shù)是4劃去13824后面的三位數(shù)824得到13,因?yàn)?3=8,33=27,∵8<13<27,∴20<<30.∴=24;由103=1000,1003=1000000,1000<110592<1000000,∴10<<100,∴是兩位數(shù);∵只有個(gè)位數(shù)是8的立方數(shù)是個(gè)位數(shù)是2,∴的個(gè)位上的數(shù)是8,劃去110592后面的三位數(shù)592得到110,因?yàn)?3=64,53=125,∵64<110<125,∴40<<50.∴=-48;故答案為:24,-48.【點(diǎn)睛】此題考查立方根,解題關(guān)鍵在于理解一個(gè)數(shù)的立方的個(gè)位數(shù)就是這個(gè)數(shù)的個(gè)位數(shù)的立方的個(gè)位數(shù).13.(1),;(2);(3)【解析】【分析】(1)利用非負(fù)數(shù)的性質(zhì)即可解決問題;(2)利用三角形面積求法,由列方程組,求出點(diǎn)C坐標(biāo),進(jìn)而由△ACD面積求出D點(diǎn)坐標(biāo).(3)由平行線間距離相等得到,繼而求出E點(diǎn)坐標(biāo),同理求出F點(diǎn)坐標(biāo),再由GE=12求出G點(diǎn)坐標(biāo),根據(jù)求出PG的長即可求P點(diǎn)坐標(biāo).【詳解】解:(1),∴,,,,,,,(2)由∴,,,如圖1,連,作軸,軸,,即,,,而,,,,(3)如圖2:∵EF∥AB,∴,∴,即,,,,,,,,,,,,,,【點(diǎn)睛】本題考查的是二元一次方程的應(yīng)用、三角形的面積公式、坐標(biāo)與圖形的性質(zhì)、平移的性質(zhì),靈活運(yùn)用分情況討論思想、掌握平移規(guī)律是解題的關(guān)鍵.14.(1);(2)的值為40°;(3).【分析】(1)過點(diǎn)O作OG∥AB,可得AB∥OG∥CD,利用平行線的性質(zhì)可求解;(2)過點(diǎn)M作MK∥AB,過點(diǎn)N作NH∥CD,由角平分線的定義可設(shè)∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,進(jìn)而求解;(3)設(shè)直線FK與EG交于點(diǎn)H,F(xiàn)K與AB交于點(diǎn)K,根據(jù)平行線的性質(zhì)即三角形外角的性質(zhì)及,可得,結(jié)合,可得即可得關(guān)于n的方程,計(jì)算可求解n值.【詳解】證明:過點(diǎn)O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∴即∵∠EOF=100°,∴∠;(2)解:過點(diǎn)M作MK∥AB,過點(diǎn)N作NH∥CD,∵EM平分∠BEO,F(xiàn)N平分∠CFO,設(shè)∵∴∴x-y=40°,∵M(jìn)K∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∴=x-y=40°,的值為40°;(3)如圖,設(shè)直線FK與EG交于點(diǎn)H,F(xiàn)K與AB交于點(diǎn)K,∵AB∥CD,∴∵∴∵∴即∵FK在∠DFO內(nèi),∴,∵∴∴即∴解得.經(jīng)檢驗(yàn),符合題意,故答案為:.【點(diǎn)睛】本題主要考查平行線的性質(zhì),角平分線的定義,靈活運(yùn)用平行線的性質(zhì)是解題的關(guān)鍵.15.(1);(2)當(dāng)時(shí),和面積的相等;(3)m的取值范圍是【分析】(1)利用非負(fù)數(shù)的性質(zhì)求出a,b,c即可.(2)設(shè)點(diǎn)D的坐標(biāo)為(0,y),根據(jù)面積關(guān)系,構(gòu)建方程求出y,再根據(jù)△BOC和△AOD面積的相等,構(gòu)建方程求出t即可.(3)分兩種情形:①當(dāng)-2<m<0時(shí),如圖1中,②當(dāng)m≤-2時(shí),如圖2中,根據(jù)S△MOC≥5,構(gòu)建不等式求解即可.【詳解】解:(1)∵|a-2|+(b-3)2+=0,又∵|a-2|≥0,(b-3)2≥0,≥0,∴,∴a=2,b=3,c=-4;(2)設(shè)點(diǎn)D的坐標(biāo)為(0,y),則S△BOD=×BO×OD=×4×y=2y,S△AOD=xA?OD=×2y=y,S△AOB=×OB?yA=×4×3=6,∵S△BOD+S△AOD=S△AOB,即2y+y=6,解得y=2,即點(diǎn)D的坐標(biāo)為(0,2),∴S△BOC=BO?yc=×4t=2t,S△AOD=xA?OD=×2×2=2,∵△BOC和△AOD面積的相等,即2t=2,解得t=1,∴當(dāng)t=1時(shí),△BOC和△AOD面積的相等;(3)①當(dāng)-2<m<0時(shí),如圖1中,過點(diǎn)C作CF⊥軸于點(diǎn)F,過點(diǎn)M作GE⊥軸于點(diǎn)E,過點(diǎn)C作CG⊥軸交GE于點(diǎn)G,則四邊形CGEF為矩形,∵SCGEF=2×4=8,S△CFO=×2×1=1,S△EMO=×(0?m)×3=?m,S△CMG=×(m+2)×4=2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=8?1?(?m)?2(m+2)=3?m,∵S△MOC≥5,即3?m≥5,解得m≤-4,這與-2<m<0矛盾.②當(dāng)m≤-2時(shí),如圖2中,過點(diǎn)C作GF⊥軸于點(diǎn)F,過點(diǎn)M作ME⊥軸于點(diǎn)E,過點(diǎn)M作MG⊥軸交GF于點(diǎn)G,則四邊形MEFG為矩形,∵SGMEF=(0-m)×4=-4m,S△CFO=×2×1=1,S△EMO=×(0?m)×3=?m,S△CMG=×(?2?m)×4=?2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=?4m?1?(?m)?[?2(m+2)]=3?m,∵S△MOC≥5,即3?m≥5,解得m≤-4,綜上所述,m的取值范圍是m≤-4.【點(diǎn)睛】本題考查了坐標(biāo)與圖形的性質(zhì),三角形的面積,非負(fù)數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù),構(gòu)建方程解決問題,屬于中考?jí)狠S題.16.(1)2;(2)26;(3)【分析】(1)利用方法二來求的值;由題意可知;(2)先根據(jù)方法二的基本步驟求出,即可得;(3)通過方法二得出,再利用不等式的性質(zhì)進(jìn)行求解.【詳解】解:(1)利用方法二來求的值;由題意可知:,即;(2)對(duì)于方程組,由①②可得:,則,由③④可得:,,將代入④可得,,則;(3)已知,通過方法二計(jì)算得:,又,.【點(diǎn)睛】本題考查了二元一次方程的求解、代數(shù)式的求值、不等式的性質(zhì),解題的關(guān)鍵是理解材料中的方法二中的基本操作步驟.17.(1);24;(2)①;見解析;②或【分析】(1)由平移的性質(zhì)得出點(diǎn)C坐標(biāo),AC=6,再求出AB,即可得出結(jié)論;(2)①過點(diǎn)作交于,分別用CE表示出兩個(gè)三角形的面積,即可得到答案;②根據(jù)題意,可分為兩種情況進(jìn)行討論分析:(i)當(dāng)交線段于,且將四邊形分成面積為兩部分時(shí);當(dāng)交于點(diǎn),將四邊形分成面積為兩部分時(shí);分別求出點(diǎn)P的坐標(biāo)即可.【詳解】解:(1)∵點(diǎn)A(3,5),將AB向下平移6個(gè)單位得線段CD,∴C(3,56),即:C(3,1),由平移得,AC=6,四邊形ABDC是矩形,∵A(3,5),B(7,5),∴AB=73=4,∴CD=4,∴點(diǎn)D的坐標(biāo)為:;∴S四邊形ABDC=AB?AC=4×6=24,即:線段AB平移到CD掃過的面積為24;故答案為:;24;(2)①過點(diǎn)作交于,則,如圖:∴,又∵,∴.②(i)當(dāng)交線段于,且將四邊形分成面積為兩部分時(shí),連接,延長交軸于點(diǎn),則,∵,又∵,∴,∴,即,∵,∴,∴,∴.(ii)當(dāng)交于點(diǎn),將四邊形分成面積為兩部分時(shí),連接,延長交軸于點(diǎn),則.過點(diǎn)作交的延長線于點(diǎn),則,∴,,即,∵,∴,又∵,即,∴,∴,∴.綜上所述,或.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了平移的性質(zhì),矩形的判定,三角形的面積公式,用分類討論的思想是解本題的關(guān)鍵.18.(1),;(2)或;(3)或【分析】(1)根據(jù)一個(gè)數(shù)的平方與絕對(duì)值均非負(fù),且其和為0,則可得它們都為0,從而可求得a和b的值;(2)過點(diǎn)P作直線l垂直于x軸,延長交直線于點(diǎn),設(shè)點(diǎn)坐標(biāo)為,過作交直線于點(diǎn),根據(jù)面積關(guān)系求出Q點(diǎn)坐標(biāo),再求出PQ的長度,即可求出n的值;(3)先根據(jù)求出C點(diǎn)坐標(biāo),再根據(jù)求出D點(diǎn)坐標(biāo),根據(jù)題意可得F點(diǎn)坐標(biāo),由得關(guān)于t的方程,求出t值即可.【詳解】(1),,且,,(2)過作直線垂直于軸,延長交直線于點(diǎn),設(shè)點(diǎn)坐標(biāo)為,過作交直線于點(diǎn),如圖所示∵∴解得,點(diǎn)坐標(biāo)為∵∴解得:或(3)當(dāng)或時(shí),有.如圖,延長BA交x軸于點(diǎn)D,過A點(diǎn)作AG⊥x軸于點(diǎn)G,過B點(diǎn)作BN⊥x軸于點(diǎn)N,∵∴解得:∴∵∴解得:∵∴當(dāng)運(yùn)動(dòng)t秒時(shí),∴∵CE=t∴,∵∴解得:或.【點(diǎn)睛】本題主要考查三角形的面積,含絕對(duì)值方程解法,熟練掌握直角坐標(biāo)系的知識(shí),三角形的面積,梯形的面積等知識(shí)是解題的關(guān)鍵,難點(diǎn)在于對(duì)圖形進(jìn)行割補(bǔ)轉(zhuǎn)化為易求面積的圖形.19.(1)A、B兩種品牌電風(fēng)扇每臺(tái)的進(jìn)價(jià)分別是100元、150元;(2)為能在銷售完這兩種電風(fēng)扇后獲得最大的利潤,該商店應(yīng)采用購進(jìn)A種品牌的電風(fēng)扇7臺(tái),購進(jìn)B種品牌的電風(fēng)扇2臺(tái).【分析】(1)設(shè)A種品牌電風(fēng)扇每臺(tái)進(jìn)價(jià)元,B種品牌電風(fēng)扇每臺(tái)進(jìn)價(jià)元,根據(jù)題意即可列出關(guān)于x、y的二元一次方程組,解出x、y即可.(2)設(shè)購進(jìn)A品牌電風(fēng)扇臺(tái),B品牌電風(fēng)扇臺(tái),根據(jù)題意可列等式,由a和b都為整數(shù)即可求出a和b的值的幾種可能,然后分別算出每一種情況的利潤進(jìn)行比較即可.【詳解】(1)設(shè)A、B兩種品牌電風(fēng)扇每臺(tái)的進(jìn)價(jià)分別是x元、y元,由題意得:,解得:,答:A、B兩種品牌電風(fēng)扇每臺(tái)的進(jìn)價(jià)分別是100元、150元;(2)設(shè)購進(jìn)A種品牌的電風(fēng)扇a臺(tái),購進(jìn)B種品牌的電風(fēng)扇b臺(tái),由題意得:100a+150b=1000,其正整數(shù)解為:或或,當(dāng)a=1,b=6時(shí),利潤=80×1+100×6=680(元),當(dāng)a=4,b=4時(shí),利潤=80×4+100×4=720(元),當(dāng)a=7,b=2時(shí),利潤=80×7+100×2=760(元),∵680<720<760,∴當(dāng)a=7,b=2時(shí),利潤最大,答:為能在銷售完這兩種電風(fēng)扇后獲得最大的利潤,該商店應(yīng)采用購進(jìn)A種品牌的電風(fēng)扇7臺(tái),購進(jìn)B種品牌的電風(fēng)扇2臺(tái).【點(diǎn)睛】本題主要考查了二元一次方程組的實(shí)際應(yīng)用,根據(jù)題意找出等量關(guān)系列出等式是解答本題的關(guān)鍵.20.(1),;(2)【分析】(1)把和當(dāng)做未知數(shù),利用加減消元法解二元一次方程組即可;(2)先證明AB∥EF,則可以得到CD∥AB,∠C+∠CAB=180°,求出∠CAB的度數(shù)即可求解.【詳解】解:(1)用②+①得:,解得,把代入①解得;(2)∵∴AB∥EF,∵,∴CD∥AB,∴∠C+∠CAB=180°,∵∠CAB=∠EAC+∠BAE,AC⊥AE,∴∠CAE=90°,∴∠CAB=140°∴40°.【點(diǎn)睛】本題考查了平行線的判定和性質(zhì),解二元一次方程組,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.21.(1)=6;(2)a=3,b=78或a=7,b=78.【分析】(1)=(217-127)÷15=6;(2)分1≤a<5,a=5,5<a≤9三種情形討論計(jì)算.【詳解】(1)當(dāng),時(shí),可以得到217,127.較大三位數(shù)減去較小三位數(shù)的差為,而,∴.(2)當(dāng),時(shí),可以得a50,5a0.三位數(shù)分別為100a+50,500+10a,當(dāng)1≤a<5時(shí),(500+10a)-(100a+50)=450-90a,而,∴=,∴=;當(dāng)a=5時(shí),(500+10a)-(100a+50)=0,而,∴=0,∴=0;當(dāng)5<a≤9時(shí),(100a+50)-(500+10a)=90a-450,而,∴=,∴=a-5;當(dāng),時(shí),可以得900+10x+8,100x+98.∵,∴(900+10x+8)-(100x+98)=810-90x,而,∴=,,∴=;當(dāng)1≤a<5時(shí),5-a+27-3x=8,∴a+3x=24,∴當(dāng)a=1時(shí),x=(舍去),當(dāng)a=2時(shí),x=(舍去),當(dāng)a=3時(shí),x=7,當(dāng)a=4時(shí),x=(舍去),∴a=3,b=78;當(dāng)a=5時(shí),則27-3x=8,∴x=(舍去),當(dāng)5<a≤9時(shí),則a-5+27-3x=8,∴3x-a=14,∴當(dāng)a=6時(shí),x=(舍去),當(dāng)a=7時(shí),x=7,當(dāng)a=8時(shí),x=(舍去),當(dāng)a=9時(shí),x=(舍去),∴a=7,b=78;綜上所述,a=3,b=78或a=7,b=78.【點(diǎn)睛】本題考查了新定義問題和二元一次方程的整數(shù)解,準(zhǔn)確理解新定義的意義,靈活運(yùn)用分類思想和枚舉法是解題的關(guān)鍵.22.(1)a=60,b=40;(2)①64,38;②x=7,y=12【分析】(1)由圖示利用板材的長列出關(guān)于a、b的二元一次方程組求解;(2)①根據(jù)已知和圖示計(jì)算出兩種裁法共產(chǎn)生A型板材和B型板材的張數(shù);②根據(jù)豎式與橫式禮品盒所需要的A、B兩種型號(hào)板材的張數(shù)列出關(guān)于x、y的二元一次方程組,然后求解即可.【詳解】解:(1)由題意得:,解得:,答:圖甲中與的值分別為:60、40;(2)①由圖示裁法一產(chǎn)生型板材為:,裁法二產(chǎn)生型板材為:,所以兩種裁法共產(chǎn)生型板材為(張,由圖示裁法一產(chǎn)生型板材為:,裁法二產(chǎn)生型板材為,,所以兩種裁法共產(chǎn)生型板材為(張,故答案為:64,38;②根據(jù)題意豎式有蓋禮品盒的個(gè),橫式無蓋禮品盒的個(gè),則型板材需要個(gè),型板材需要個(gè),所以,解得.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是二元一次方程組的應(yīng)用,關(guān)鍵是根據(jù)已知先列出二元一次方程組求出a、b的值,根據(jù)圖示列出算式以及關(guān)于x、y的二元一次方程組.23.(1)A(30,0),C(24,7);(2)≤t<10;(3)見解析【分析】(1)利用非負(fù)數(shù)的性質(zhì)求出a=30,b=7,得出A,B的坐標(biāo),由平移的性質(zhì)可得出答案;(2)由題意得出CD=2t,則BD=24﹣2t,OE=3t,根據(jù)梯形的面積公式得出S四邊形BOED=×(24﹣2t+3t)×7,S四邊形ACDE=×7×(2t+30﹣3t),則可得出關(guān)于t的不等式,解不等式可得出答案;(3)由題意可得出S△OEF﹣S△DCF=3.5t,根據(jù)t>0則可得出結(jié)論.【詳解】(1)解:∵∴=0,|2a﹣3b﹣39|=0.∴a﹣b﹣23=0,2a﹣3b﹣39=0,解得,a=30,b=7.∴A(30,0),B(0,7),∵點(diǎn)B向右平移24個(gè)單位長度得到點(diǎn)C,∴C(24,7).(2)解:由題意得,CD=2t,則BD=24﹣2t,OE=3t,∴S四邊形BOED=×(24﹣2t+3t)×7,S四邊形ACDE=×7×(2t+30﹣3t),∵S四邊形BOED≥S四邊形ACDE,∴×(24﹣2t+3t)×7≥××7×(2t+30﹣3t),解得t≥,∵0<t<10,∴≤t<10.(3)證明:∵S△OEF﹣S△DCF=S四邊形BOED﹣S△OBC=×(24﹣2t+3t)×7﹣×24×7,∴S△OEF﹣S△DCF=3.5t,∵0<t<10,∴3.5t>0,∴S△OEF﹣S△DCF>0,∴S△OEF>S△DCF.【點(diǎn)睛】本題是四邊形綜合題,考查了非負(fù)數(shù)的性質(zhì),平移的性質(zhì),坐標(biāo)與圖形的性質(zhì),梯形的面積,解一元一次不等式,解二元一次方程組,解題的關(guān)鍵學(xué)會(huì)利用參數(shù)解決問題,屬于中考??碱}型.24.(1)每副乒乓球拍單價(jià)為50元,每個(gè)乒乓球的單價(jià)為1元;(2)4000元,4320元;(3)3200+20m,3600+18m;(4)若甲商店花錢少,則3200+20m<3600+18m;解得m<200;若乙商店花費(fèi)少,則3200+20m>3600+18m,解得m>200;若甲商店和乙商店一樣多時(shí),則3200+20m=3600+18m,解得m=200;綜上所述100<m<200時(shí)甲商店優(yōu)惠m>200時(shí)乙商店優(yōu)惠m=200時(shí)兩家商店一樣【分析】(1)設(shè)每副乒乓球拍單價(jià)為x元,每個(gè)乒乓球的單價(jià)為y元.根據(jù)題意列出二元一次方程組,解答即可;(2)利用(1)中求得的價(jià)格即可解答;(3)分別用含m的代數(shù)式表示在甲、乙兩家商店購買所花的費(fèi)用即可;(4)利用(3)求得的代數(shù)式,進(jìn)行分類討論即可.【詳解】解:(1)設(shè)每副乒乓球拍單價(jià)為x元,每個(gè)乒乓球的單價(jià)為y元.由題意可知解得答:每副乒乓球拍單價(jià)為50元,每個(gè)乒乓球的單價(jià)為1元.(2)甲商店:(元);乙商店:(元)故答案為:4000元;4320元;(3)在甲商店購買的費(fèi)用為:在乙商店購買的費(fèi)用為:(4)若甲商店花錢少,則3200+20m<3600+18m解得m<200若乙商店花費(fèi)少,則3200+20m>3600+18m,解得m>200,若甲商店和乙商店一樣多時(shí),則3200+20m=3600+18m,解得m=200綜上所述100<m<200時(shí)甲商店優(yōu)惠m>200時(shí)乙商店優(yōu)惠m=200時(shí)兩家商店一樣.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用以及方案的選擇,審清題意,列出方程組是解題關(guān)鍵.25.(1)-1;(2)t=-2,-1,0,1;(3)13組【分析】(1)把x=2代入方程3x-5y=11得,求得y的值,即可求得θ的值;(2)參考小明的解題方法求解即可;(3)參考小明的解題方法求解后,即可得到結(jié)論.【詳解】解:(1)把x=2代入方程3x-5y=11得,6-6y=11,解得y=-1,∵方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則θ=-1,故答案為-1;(2)方程2x+3y=24一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因?yàn)?,解?3<t<2.因?yàn)閠為整數(shù),所以t=-2,-1,0,1.(3)方程19x+8y=1908一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).∵,解得<t<12.5.因?yàn)閠為整數(shù),所以t=0,1,2,3,4,5,67,8,9,10

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論