湖北省襄陽市襄陽四中學2024屆中考數(shù)學考前最后一卷含解析_第1頁
湖北省襄陽市襄陽四中學2024屆中考數(shù)學考前最后一卷含解析_第2頁
湖北省襄陽市襄陽四中學2024屆中考數(shù)學考前最后一卷含解析_第3頁
湖北省襄陽市襄陽四中學2024屆中考數(shù)學考前最后一卷含解析_第4頁
湖北省襄陽市襄陽四中學2024屆中考數(shù)學考前最后一卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省襄陽市襄陽四中學2024屆中考數(shù)學考前最后一卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.的相反數(shù)是()A.2 B.﹣2 C.4 D.﹣2.有一種球狀細菌的直徑用科學記數(shù)法表示為2.16×10﹣3米,則這個直徑是()A.216000米 B.0.00216米C.0.000216米 D.0.0000216米3.四個有理數(shù)﹣1,2,0,﹣3,其中最小的是()A.﹣1B.2C.0D.﹣34.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的正半軸相交于A,B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC.有下列結(jié)論:①abc<0;②3b+4c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0有一個根為﹣,其中正確的結(jié)論個數(shù)是()A.1 B.2 C.3 D.45.如圖,將RtABC繞直角項點C順時針旋轉(zhuǎn)90°,得到A'B'C,連接AA',若∠1=20°,則∠B的度數(shù)是()A.70° B.65° C.60° D.55°6.某市公園的東、西、南、北方向上各有一個入口,周末佳佳和琪琪隨機從一個入口進入該公園游玩,則佳佳和琪琪恰好從同一個入口進入該公園的概率是()A. B. C. D.7.如圖,動點P從(0,3)出發(fā),沿所示方向運動,每當碰到矩形的邊時反彈,反彈時反射角等于入射角.當點P第2018次碰到矩形的邊時,點P的坐標為()A.(1,4) B.(7,4) C.(6,4) D.(8,3)8.如圖所示的正方體的展開圖是()A. B. C. D.9.下列各式計算正確的是()A. B. C. D.10.以坐標原點為圓心,以2個單位為半徑畫⊙O,下面的點中,在⊙O上的是()A.(1,1) B.(,) C.(1,3) D.(1,)11.矩形ABCD的頂點坐標分別為A(1,4)、B(1,1)、C(5,1),則點D的坐標為()A.(5,5) B.(5,4) C.(6,4) D.(6,5)12.對于有理數(shù)x、y定義一種運算“Δ”:xΔy=ax+by+c,其中a、b、c為常數(shù),等式右邊是通常的加法與乘法運算,已知3Δ5=15,4Δ7=28,則1Δ1的值為()A.-1 B.-11 C.1 D.11二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如果a,b分別是2016的兩個平方根,那么a+b﹣ab=___.14.分解因式:9x3﹣18x2+9x=.15.如圖,⊙O的外切正六邊形ABCDEF的邊長為2,則圖中陰影部分的面積為_____.16.在一個不透明的布袋中裝有4個白球和n個黃球,它們除顏色不同外,其余均相同,若從中隨機摸出一個球,摸到白球的概率是,則n=_____.17.二次根式中的字母a的取值范圍是_____.18.如圖,在網(wǎng)格中,小正方形的邊長均為1,點A、B、O都在格點上,則∠OAB的正弦值是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB是半圓O的直徑,點P是半圓上不與點A,B重合的動點,PC∥AB,點M是OP中點.(1)求證:四邊形OBCP是平行四邊形;(2)填空:①當∠BOP=時,四邊形AOCP是菱形;②連接BP,當∠ABP=時,PC是⊙O的切線.20.(6分)在平面直角坐標系xOy中,拋物線y=12x(1)求直線BC的解析式;(2)點D在拋物線上,且點D的橫坐標為1.將拋物線在點A,D之間的部分(包含點A,D)記為圖象G,若圖象G向下平移t(t>0)個單位后與直線BC只有一個公共點,求t的取值范圍.21.(6分)春節(jié)期間,小麗一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游.租車公司:按日收取固定租金80元,另外再按租車時間計費.共享汽車:無固定租金,直接以租車時間(時)計費.如圖是兩種租車方式所需費用y1(元)、y2(元)與租車時間x(時)之間的函數(shù)圖象,根據(jù)以上信息,回答下列問題:(1)分別求出y1、y2與x的函數(shù)表達式;(2)請你幫助小麗一家選擇合算的租車方案.22.(8分)計算:解不等式組,并寫出它的所有整數(shù)解.23.(8分)已知二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過(0,﹣3).(1)n=_____________;(2)若二次函數(shù)y=mx2﹣2mx+n的圖象與x軸有且只有一個交點,求m值;(3)若二次函數(shù)y=mx2﹣2mx+n的圖象與平行于x軸的直線y=5的一個交點的橫坐標為4,則另一個交點的坐標為;(4)如圖,二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過點A(3,0),連接AC,點P是拋物線位于線段AC下方圖象上的任意一點,求△PAC面積的最大值.24.(10分)如圖,在平行四邊形ABCD中,E為BC邊上一點,連結(jié)AE、BD且AE=AB.求證:∠ABE=∠EAD;若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.25.(10分)(1)計算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化簡,再求值:()+,其中a=﹣2+.26.(12分)化簡求值:,其中x是不等式組的整數(shù)解.27.(12分)已知:如圖,在梯形ABCD中,AD∥BC,AB=DC,E是對角線AC上一點,且AC·CE=AD·BC.(1)求證:∠DCA=∠EBC;(2)延長BE交AD于F,求證:AB2=AF·AD.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】分析:根據(jù)只有符號不同的兩個數(shù)是互為相反數(shù)解答即可.詳解:的相反數(shù)是,即2.故選A.點睛:本題考查了相反數(shù)的定義,解答本題的關(guān)鍵是熟練掌握相反數(shù)的定義,正數(shù)的相反數(shù)是負數(shù),0的相反數(shù)是0,負數(shù)的相反數(shù)是正數(shù).2、B【解題分析】

絕對值小于1的負數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【題目詳解】2.16×10﹣3米=0.00216米.故選B.【題目點撥】考查了用科學記數(shù)法表示較小的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.3、D【解題分析】解:∵-1<-1<0<2,∴最小的是-1.故選D.4、B【解題分析】

由二次函數(shù)圖象的開口方向、對稱軸及與y軸的交點可分別判斷出a、b、c的符號,從而可判斷①;由對稱軸=2可知a=,由圖象可知當x=1時,y>0,可判斷②;由OA=OC,且OA<1,可判斷③;把-代入方程整理可得ac2-bc+c=0,結(jié)合③可判斷④;從而可得出答案.【題目詳解】解:∵圖象開口向下,∴a<0,∵對稱軸為直線x=2,∴>0,∴b>0,∵與y軸的交點在x軸的下方,∴c<0,∴abc>0,故①錯誤.∵對稱軸為直線x=2,∴=2,∴a=,∵由圖象可知當x=1時,y>0,∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,∴3b+4c>0,故②錯誤.∵由圖象可知OA<1,且OA=OC,∴OC<1,即-c<1,∴c>-1,故③正確.∵假設方程的一個根為x=-,把x=-代入方程可得+c=0,整理可得ac-b+1=0,兩邊同時乘c可得ac2-bc+c=0,∴方程有一個根為x=-c,由③可知-c=OA,而當x=OA是方程的根,∴x=-c是方程的根,即假設成立,故④正確.綜上可知正確的結(jié)論有三個:③④.故選B.【題目點撥】本題主要考查二次函數(shù)的圖象和性質(zhì).熟練掌握圖象與系數(shù)的關(guān)系以及二次函數(shù)與方程、不等式的關(guān)系是解題的關(guān)鍵.特別是利用好題目中的OA=OC,是解題的關(guān)鍵.5、B【解題分析】

根據(jù)圖形旋轉(zhuǎn)的性質(zhì)得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,從而得∠AA′C=45°,結(jié)合∠1=20°,即可求解.【題目詳解】∵將RtABC繞直角項點C順時針旋轉(zhuǎn)90°,得到A'B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故選B.【題目點撥】本題主要考查旋轉(zhuǎn)的性質(zhì),等腰三角形和直角三角形的性質(zhì),掌握等腰三角形和直角三角形的性質(zhì)定理,是解題的關(guān)鍵.6、B【解題分析】

首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果,可求得佳佳和琪琪恰好從同一個入口進入該公園的情況,再利用概率公式求解即可求得答案.【題目詳解】畫樹狀圖如下:由樹狀圖可知,共有16種等可能結(jié)果,其中佳佳和琪琪恰好從同一個入口進入該公園的有4種等可能結(jié)果,所以佳佳和琪琪恰好從同一個入口進入該公園的概率為,故選B.【題目點撥】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.7、B【解題分析】如圖,經(jīng)過6次反彈后動點回到出發(fā)點(0,3),∵2018÷6=336…2,∴當點P第2018次碰到矩形的邊時為第336個循環(huán)組的第2次反彈,點P的坐標為(7,4).故選C.8、A【解題分析】

有些立體圖形是由一些平面圖形圍成的,將它們的表面適當?shù)募糸_,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖.根據(jù)立體圖形表面的圖形相對位置可以判斷.【題目詳解】把各個展開圖折回立方體,根據(jù)三個特殊圖案的相對位置關(guān)系,可知只有選項A正確.故選A【題目點撥】本題考核知識點:長方體表面展開圖.解題關(guān)鍵點:把展開圖折回立方體再觀察.9、C【解題分析】

解:A.2a與2不是同類項,不能合并,故本選項錯誤;B.應為,故本選項錯誤;C.,正確;D.應為,故本選項錯誤.故選C.【題目點撥】本題考查冪的乘方與積的乘方;同底數(shù)冪的乘法.10、B【解題分析】

根據(jù)點到圓心的距離和半徑的數(shù)量關(guān)系即可判定點與圓的位置關(guān)系.【題目詳解】A選項,(1,1)到坐標原點的距離為<2,因此點在圓內(nèi),B選項(,)到坐標原點的距離為=2,因此點在圓上,C選項(1,3)到坐標原點的距離為>2,因此點在圓外D選項(1,)到坐標原點的距離為<2,因此點在圓內(nèi),故選B.【題目點撥】本題主要考查點與圓的位置關(guān)系,解決本題的關(guān)鍵是要熟練掌握點與圓的位置關(guān)系.11、B【解題分析】

由矩形的性質(zhì)可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求點D坐標.【題目詳解】解:∵四邊形ABCD是矩形

∴AB∥CD,AB=CD,AD=BC,AD∥BC,

∵A(1,4)、B(1,1)、C(5,1),

∴AB∥CD∥y軸,AD∥BC∥x軸

∴點D坐標為(5,4)

故選B.【題目點撥】本題考查了矩形的性質(zhì),坐標與圖形性質(zhì),關(guān)鍵是熟練掌握這些性質(zhì).12、B【解題分析】

先由運算的定義,寫出3△5=25,4△7=28,得到關(guān)于a、b、c的方程組,用含c的代數(shù)式表示出a、b.代入2△2求出值.【題目詳解】由規(guī)定的運算,3△5=3a+5b+c=25,4a+7b+c=28所以3a+5b+c=解這個方程組,得a所以2△2=a+b+c=-35-2c+24+c+c=-2.故選B.【題目點撥】本題考查了新運算、三元一次方程組的解法.解決本題的關(guān)鍵是根據(jù)新運算的意義,正確的寫出3△5=25,4△7=28,2△2.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解題分析】

先由平方根的應用得出a,b的值,進而得出a+b=0,代入即可得出結(jié)論.【題目詳解】∵a,b分別是1的兩個平方根,∴∵a,b分別是1的兩個平方根,∴a+b=0,∴ab=a×(﹣a)=﹣a2=﹣1,∴a+b﹣ab=0﹣(﹣1)=1,故答案為:1.【題目點撥】此題主要考查了平方根的性質(zhì)和意義,解本題的關(guān)鍵是熟練掌握平方根的性質(zhì).14、9x【解題分析】試題分析:首先提取公因式9x,然后利用完全平方公式進行因式分解.原式=9x(-2x+1)=9x.考點:因式分解15、【解題分析】

由于六邊形ABCDEF是正六邊形,所以∠AOB=60°,故△OAB是等邊三角形,OA=OB=AB=2,設點G為AB與⊙O的切點,連接OG,則OG⊥AB,OG=OA?sin60°,再根據(jù)S陰影=S△OAB-S扇形OMN,進而可得出結(jié)論.【題目詳解】∵六邊形ABCDEF是正六邊形,

∴∠AOB=60°,

∴△OAB是等邊三角形,OA=OB=AB=2,

設點G為AB與⊙O的切點,連接OG,則OG⊥AB,

∴∴S陰影=S△OAB-S扇形OMN=故答案為【題目點撥】考查不規(guī)則圖形面積的計算,掌握扇形的面積公式是解題的關(guān)鍵.16、1【解題分析】

根據(jù)白球的概率公式=列出方程求解即可.【題目詳解】不透明的布袋中的球除顏色不同外,其余均相同,共有n+4個球,其中白球4個,根據(jù)古典型概率公式知:P(白球)==.解得:n=1,故答案為1.【題目點撥】此題主要考查了概率公式的應用,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.17、a≥﹣1.【解題分析】

根據(jù)二次根式的被開方數(shù)為非負數(shù),可以得出關(guān)于a的不等式,繼而求得a的取值范圍.【題目詳解】由分析可得,a+1≥0,解得:a≥﹣1.【題目點撥】熟練掌握二次根式被開方數(shù)為非負數(shù)是解答本題的關(guān)鍵.18、【解題分析】

如圖,過點O作OC⊥AB的延長線于點C,則AC=4,OC=2,在Rt△ACO中,AO=,∴sin∠OAB=.故答案為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)①120°;②45°【解題分析】

(1)由AAS證明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出結(jié)論;

(2)①證出OA=OP=PA,得出△AOP是等邊三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;

②由切線的性質(zhì)和平行線的性質(zhì)得出∠BOP=90°,由等腰三角形的性質(zhì)得出∠ABP=∠OPB=45°即可.【題目詳解】(1)∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵點M是OP的中點,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圓O的直徑,∴OA=OB,∴PC=OB.又PC∥AB,∴四邊形OBCP是平行四邊形.(2)①∵四邊形AOCP是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等邊三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案為120°;②∵PC是⊙O的切線,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案為45°.【題目點撥】本題是圓的綜合題目,考查了全等三角形的判定與性質(zhì)、平行四邊形的判定、切線的性質(zhì)、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識;本題綜合性強,熟練掌握切線的性質(zhì)和平行四邊形的判定是解題的關(guān)鍵.20、(1)y=12x+1【解題分析】試題分析:(1)首先根據(jù)拋物線y=12x2-x+2求出與y軸交于點A,頂點為點B的坐標,然后求出點A關(guān)于拋物線的對稱軸對稱點C的坐標,設設直線BC的解析式為y=kx+b.代入點B,點C的坐標,然后解方程組即可;(2)求出點D、E、F的坐標,設點A平移后的對應點為點A',點D平移后的對應點為點D'.當圖象G向下平移至點A'與點E重合時,點D'在直線BC上方,此時t=1;當圖象G向下平移至點D'試題解析:解:(1)∵拋物線y=12x∴點A的坐標為(0,2).1分∵y=1∴拋物線的對稱軸為直線x=1,頂點B的坐標為(1,32又∵點C與點A關(guān)于拋物線的對稱軸對稱,∴點C的坐標為(2,2),且點C在拋物線上.設直線BC的解析式為y=kx+b.∵直線BC經(jīng)過點B(1,32∴k+b=32∴直線BC的解析式為y=1(2)∵拋物線y=1當x=4時,y=6,∴點D的坐標為(1,6).1分∵直線y=1當x=0時,y=1,當x=4時,y=3,∴如圖,點E的坐標為(0,1),點F的坐標為(1,2).設點A平移后的對應點為點A',點D平移后的對應點為點D'.當圖象G向下平移至點A'與點E重合時,點D'在直線BC上方,此時t=1;5分當圖象G向下平移至點D'與點F重合時,點A'在直線BC下方,此時t=2.6分結(jié)合圖象可知,符合題意的t的取值范圍是1<t≤考點:1.二次函數(shù)的性質(zhì);2.待定系數(shù)法求解析式;2.平移.21、(1)y1=kx+80,y2=30x;(2)見解析.【解題分析】

(1)設y1=kx+80,將(2,110)代入求解即可;設y2=mx,將(5,150)代入求解即可;(2)分y1=y2,y1<y2,y1>y2三種情況分析即可.【題目詳解】解:(1)由題意,設y1=kx+80,將(2,110)代入,得110=2k+80,解得k=15,則y1與x的函數(shù)表達式為y1=15x+80;設y2=mx,將(5,150)代入,得150=5m,解得m=30,則y2與x的函數(shù)表達式為y2=30x;(2)由y1=y2得,15x+80=30x,解得x=;由y1<y2得,15x+80<30x,解得x>;由y1>y2得,15x+80>30x,解得x<.故當租車時間為小時時,兩種選擇一樣;當租車時間大于小時時,選擇租車公司合算;當租車時間小于小時時,選擇共享汽車合算.【題目點撥】本題考查了一次函數(shù)的應用及分類討論的數(shù)學思想,解答本題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式的方法.22、(1);(1)0,1,1.【解題分析】

(1)本題涉及零指數(shù)冪、負指數(shù)冪、特殊角的三角函數(shù)值,在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果(1)先求出每個不等式的解集,再求出不等式組的解集,最后再找出整數(shù)解即可【題目詳解】解:(1)原式=1﹣1×,=7﹣.(1),解不等式①得:x≤1,解不等式②得:x>﹣1,∴不等式組的解集是:﹣1<x≤1.故不等式組的整數(shù)解是:0,1,1.【題目點撥】此題考查零指數(shù)冪、負指數(shù)冪、特殊角的三角函數(shù)值,一元一次不等式組的整數(shù)解,掌握運算法則是解題關(guān)鍵23、(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)當a=時,△PAC的面積取最大值,最大值為【解題分析】

(2)將(0,-2)代入二次函數(shù)解析式中即可求出n值;(2)由二次函數(shù)圖象與x軸只有一個交點,利用根的判別式△=0,即可得出關(guān)于m的一元二次方程,解之取其非零值即可得出結(jié)論;(2)根據(jù)二次函數(shù)的解析式利用二次函數(shù)的性質(zhì)可找出二次函數(shù)圖象的對稱軸,利用二次函數(shù)圖象的對稱性即可找出另一個交點的坐標;(4)將點A的坐標代入二次函數(shù)解析式中可求出m值,由此可得出二次函數(shù)解析式,由點A、C的坐標,利用待定系數(shù)法可求出直線AC的解析式,過點P作PD⊥x軸于點D,交AC于點Q,設點P的坐標為(a,a2-2a-2),則點Q的坐標為(a,a-2),點D的坐標為(a,0),根據(jù)三角形的面積公式可找出S△ACP關(guān)于a的函數(shù)關(guān)系式,配方后即可得出△PAC面積的最大值.【題目詳解】解:(2)∵二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過(0,﹣2),∴n=﹣2.故答案為﹣2.(2)∵二次函數(shù)y=mx2﹣2mx﹣2的圖象與x軸有且只有一個交點,∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,解得:m2=0,m2=﹣2.∵m≠0,∴m=﹣2.(2)∵二次函數(shù)解析式為y=mx2﹣2mx﹣2,∴二次函數(shù)圖象的對稱軸為直線x=﹣=2.∵該二次函數(shù)圖象與平行于x軸的直線y=5的一個交點的橫坐標為4,∴另一交點的橫坐標為2×2﹣4=﹣2,∴另一個交點的坐標為(﹣2,5).故答案為(﹣2,5).(4)∵二次函數(shù)y=mx2﹣2mx﹣2的圖象經(jīng)過點A(2,0),∴0=9m﹣6m﹣2,∴m=2,∴二次函數(shù)解析式為y=x2﹣2x﹣2.設直線AC的解析式為y=kx+b(k≠0),將A(2,0)、C(0,﹣2)代入y=kx+b,得:,解得:,∴直線AC的解析式為y=x﹣2.過點P作PD⊥x軸于點D,交AC于點Q,如圖所示.設點P的坐標為(a,a2﹣2a﹣2),則點Q的坐標為(a,a﹣2),點D的坐標為(a,0),∴PQ=a﹣2﹣(a2﹣2a﹣2)=2a﹣a2,∴S△ACP=S△APQ+S△CPQ=PQ?OD+PQ?AD=﹣a2+a=﹣(a﹣)2+,∴當a=時,△PAC的面積取最大值,最大值為.【題目點撥】本題考查了待定系數(shù)法求一次(二次)函數(shù)解析式、拋物線與x軸的交點、二次函數(shù)的性質(zhì)以及二次函數(shù)的最值,解題的關(guān)鍵是:(2)代入點的坐標求出n值;(2)牢記當△=b2-4ac=0時拋物線與x軸只有一個交點;(2)利用二次函數(shù)的對稱軸求出另一交點的坐標;(4)利用三角形的面積公式找出S△ACP關(guān)于a的函數(shù)關(guān)系式.24、(1)證明見解析;(2)證明見解析.【解題分析】

(1)根據(jù)平行四邊形的對邊互相平行可得AD∥BC,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠AEB=∠EAD,根據(jù)等邊對等角可得∠ABE=∠AEB,即可得證.(2)根據(jù)兩直線平行,內(nèi)錯角相等可得∠ADB=∠DBE,然后求出∠AB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論