版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江蘇省射陽二中學(xué)2024屆中考考前最后一卷數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,矩形ABCD的對角線AC,BD相交于點(diǎn)O,點(diǎn)M是AB的中點(diǎn),若OM=4,AB=6,則BD的長為()A.4 B.5 C.8 D.102.若一元二次方程x2﹣2x+m=0有兩個(gè)不相同的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是()A.m≥1 B.m≤1 C.m>1 D.m<13.實(shí)數(shù)a,b在數(shù)軸上對應(yīng)的點(diǎn)的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)+b<0 B.a(chǎn)>|﹣2| C.b>π D.4.計(jì)算的值為()A. B.-4 C. D.-25.如圖,矩形ABCD的頂點(diǎn)A、C分別在直線a、b上,且a∥b,∠1=60°,則∠2的度數(shù)為()A.30° B.45° C.60° D.75°6.計(jì)算3–(–9)的結(jié)果是()A.12 B.–12 C.6 D.–67.一個(gè)幾何體的三視圖如圖所示,該幾何體是A.直三棱柱 B.長方體 C.圓錐 D.立方體8.如果,那么的值為()A.1 B.2 C. D.9.甲、乙兩人沿相同的路線由A地到B地勻速前進(jìn),A、B兩地間的路程為40km.他們前進(jìn)的路程為s(km),甲出發(fā)后的時(shí)間為t(h),甲、乙前進(jìn)的路程與時(shí)間的函數(shù)圖象如圖所示.根據(jù)圖象信息,下列說法不正確的是()A.甲的速度是10km/h B.乙的速度是20km/hC.乙出發(fā)h后與甲相遇 D.甲比乙晚到B地2h10.已知一元二次方程有一個(gè)根為2,則另一根為A.2 B.3 C.4 D.811.下列圖形中,可以看作是中心對稱圖形的是()A. B. C. D.12.如圖,菱形ABCD的邊長為2,∠B=30°.動點(diǎn)P從點(diǎn)B出發(fā),沿B-C-D的路線向點(diǎn)D運(yùn)動.設(shè)△ABP的面積為y(B、P兩點(diǎn)重合時(shí),△ABP的面積可以看作0),點(diǎn)P運(yùn)動的路程為x,則y與x之間函數(shù)關(guān)系的圖像大致為()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,分別以正六邊形相間隔的3個(gè)頂點(diǎn)為圓心,以這個(gè)正六邊形的邊長為半徑作扇形得到“三葉草”圖案,若正六邊形的邊長為3,則“三葉草”圖案中陰影部分的面積為_____(結(jié)果保留π)14.如果一個(gè)正多邊形的中心角為72°,那么這個(gè)正多邊形的邊數(shù)是.15.如圖,菱形OABC的頂點(diǎn)O是原點(diǎn),頂點(diǎn)B在y軸上,菱形的兩條對角線的長分別是6和4,反比例函數(shù)的圖象經(jīng)過點(diǎn)C,則k的值為.16.2018年5月18日,益陽新建西流灣大橋竣工通車,如圖,從沅江A地到資陽B地有兩條路線可走,從資陽B地到益陽火車站可經(jīng)會龍山大橋或西流灣大橋或龍洲大橋到達(dá),現(xiàn)讓你隨機(jī)選擇一條從沅江A地出發(fā)經(jīng)過資陽B地到達(dá)益陽火車站的行走路線,那么恰好選到經(jīng)過西流灣大橋的路線的概率是_____.17.關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根,那么的取值范圍是__________.18.如圖△EDB由△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)而來,D點(diǎn)落在AC上,DE交AB于點(diǎn)F,若AB=AC,DB=BF,則AF與BF的比值為_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4).點(diǎn)A在DE上,以A為頂點(diǎn)的拋物線過點(diǎn)C,且對稱軸x=1交x軸于點(diǎn)B.連接EC,AC.點(diǎn)P,Q為動點(diǎn),設(shè)運(yùn)動時(shí)間為t秒.(1)求拋物線的解析式.(2)在圖①中,若點(diǎn)P在線段OC上從點(diǎn)O向點(diǎn)C以1個(gè)單位/秒的速度運(yùn)動,同時(shí),點(diǎn)Q在線段CE上從點(diǎn)C向點(diǎn)E以2個(gè)單位/秒的速度運(yùn)動,當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動.當(dāng)t為何值時(shí),△PCQ為直角三角形?(3)在圖②中,若點(diǎn)P在對稱軸上從點(diǎn)A開始向點(diǎn)B以1個(gè)單位/秒的速度運(yùn)動,過點(diǎn)P做PF⊥AB,交AC于點(diǎn)F,過點(diǎn)F作FG⊥AD于點(diǎn)G,交拋物線于點(diǎn)Q,連接AQ,CQ.當(dāng)t為何值時(shí),△ACQ的面積最大?最大值是多少?20.(6分)如圖,在平行四邊形ABCD中,AB<BC.利用尺規(guī)作圖,在AD邊上確定點(diǎn)E,使點(diǎn)E到邊AB,BC的距離相等(不寫作法,保留作圖痕跡);若BC=8,CD=5,則CE=.21.(6分)如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點(diǎn),連接OG并延長交⊙O于點(diǎn)D,連接BD交AE于點(diǎn)F,延長AE至點(diǎn)C,使得FC=BC,連接BC.(1)求證:BC是⊙O的切線;(2)⊙O的半徑為5,tanA=,求FD的長.22.(8分)(1)解不等式組:;(2)解方程:.23.(8分)已知:二次函數(shù)C1:y1=ax2+2ax+a﹣1(a≠0)把二次函數(shù)C1的表達(dá)式化成y=a(x﹣h)2+b(a≠0)的形式,并寫出頂點(diǎn)坐標(biāo);已知二次函數(shù)C1的圖象經(jīng)過點(diǎn)A(﹣3,1).①求a的值;②點(diǎn)B在二次函數(shù)C1的圖象上,點(diǎn)A,B關(guān)于對稱軸對稱,連接AB.二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個(gè)交點(diǎn),求k的取值范圍.24.(10分)如圖,BD是△ABC的角平分線,點(diǎn)E,F(xiàn)分別在BC,AB上,且DE∥AB,BE=AF.(1)求證:四邊形ADEF是平行四邊形;(2)若∠ABC=60°,BD=6,求DE的長.25.(10分)綜合與探究:如圖,已知在△ABC中,AB=AC,∠BAC=90°,點(diǎn)A在x軸上,點(diǎn)B在y軸上,點(diǎn)在二次函數(shù)的圖像上.(1)求二次函數(shù)的表達(dá)式;(2)求點(diǎn)A,B的坐標(biāo);(3)把△ABC沿x軸正方向平移,當(dāng)點(diǎn)B落在拋物線上時(shí),求△ABC掃過區(qū)域的面積.26.(12分)為了解某校學(xué)生的身高情況,隨機(jī)抽取該校男生、女生進(jìn)行抽樣調(diào)查.已知抽取的樣本中男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:組別身高Ax<160B160≤x<165C165≤x<170D170≤x<175Ex≥175根據(jù)圖表提供的信息,回答下列問題:(1)樣本中,男生的身高眾數(shù)在組,中位數(shù)在組;(2)樣本中,女生身高在E組的有人,E組所在扇形的圓心角度數(shù)為;(3)已知該校共有男生600人,女生480人,請估讓身高在165≤x<175之間的學(xué)生約有多少人?27.(12分)如圖,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圓,過點(diǎn)C作⊙O的切線交BA的延長線于點(diǎn)E,BD⊥CE于點(diǎn)D,連接DO交BC于點(diǎn)M.(1)求證:BC平分∠DBA;(2)若,求的值.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解題分析】
利用三角形中位線定理求得AD的長度,然后由勾股定理來求BD的長度.【題目詳解】解:∵矩形ABCD的對角線AC,BD相交于點(diǎn)O,
∴∠BAD=90°,點(diǎn)O是線段BD的中點(diǎn),
∵點(diǎn)M是AB的中點(diǎn),
∴OM是△ABD的中位線,
∴AD=2OM=1.
∴在直角△ABD中,由勾股定理知:BD=.
故選:D.【題目點(diǎn)撥】本題考查了三角形中位線定理和矩形的性質(zhì),利用三角形中位線定理求得AD的長度是解題的關(guān)鍵.2、D【解題分析】分析:根據(jù)方程的系數(shù)結(jié)合根的判別式△>0,即可得出關(guān)于m的一元一次不等式,解之即可得出實(shí)數(shù)m的取值范圍.詳解:∵方程有兩個(gè)不相同的實(shí)數(shù)根,∴解得:m<1.故選D.點(diǎn)睛:本題考查了根的判別式,牢記“當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根”是解題的關(guān)鍵.3、D【解題分析】
根據(jù)數(shù)軸上點(diǎn)的位置,可得a,b,根據(jù)有理數(shù)的運(yùn)算,可得答案.【題目詳解】a=﹣2,2<b<1.A.a+b<0,故A不符合題意;B.a<|﹣2|,故B不符合題意;C.b<1<π,故C不符合題意;D.<0,故D符合題意;故選D.【題目點(diǎn)撥】本題考查了實(shí)數(shù)與數(shù)軸,利用有理數(shù)的運(yùn)算是解題關(guān)鍵.4、C【解題分析】
根據(jù)二次根式的運(yùn)算法則即可求出答案.【題目詳解】原式=-3=-2,故選C.【題目點(diǎn)撥】本題考查二次根式的運(yùn)算,解題的關(guān)鍵是熟練運(yùn)用二次根式的運(yùn)算法則,本題屬于基礎(chǔ)題型.5、C【解題分析】試題分析:過點(diǎn)D作DE∥a,∵四邊形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故選C.考點(diǎn):1矩形;2平行線的性質(zhì).6、A【解題分析】
根據(jù)有理數(shù)的減法,即可解答.【題目詳解】故選A.【題目點(diǎn)撥】本題考查了有理數(shù)的減法,解決本題的關(guān)鍵是熟記減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù).7、A【解題分析】
根據(jù)三視圖的形狀可判斷幾何體的形狀.【題目詳解】觀察三視圖可知,該幾何體是直三棱柱.故選A.本題考查了幾何體的三視圖和結(jié)構(gòu)特征,根據(jù)三視圖的形狀可判斷幾何體的形狀是關(guān)鍵.8、D【解題分析】
先對原分式進(jìn)行化簡,再尋找化簡結(jié)果與已知之間的關(guān)系即可得出答案.【題目詳解】故選:D.【題目點(diǎn)撥】本題主要考查分式的化簡求值,掌握分式的基本性質(zhì)是解題的關(guān)鍵.9、B【解題分析】由圖可知,甲用4小時(shí)走完全程40km,可得速度為10km/h;乙比甲晚出發(fā)一小時(shí),用1小時(shí)走完全程,可得速度為40km/h.故選B10、C【解題分析】試題分析:利用根與系數(shù)的關(guān)系來求方程的另一根.設(shè)方程的另一根為α,則α+2=6,解得α=1.考點(diǎn):根與系數(shù)的關(guān)系.11、A【解題分析】分析:根據(jù)中心對稱的定義,結(jié)合所給圖形即可作出判斷.詳解:A、是中心對稱圖形,故本選項(xiàng)正確;B、不是中心對稱圖形,故本選項(xiàng)錯(cuò)誤;C、不是中心對稱圖形,故本選項(xiàng)錯(cuò)誤;D、不是中心對稱圖形,故本選項(xiàng)錯(cuò)誤;故選:A.點(diǎn)睛:本題考查了中心對稱圖形的特點(diǎn),屬于基礎(chǔ)題,判斷中心對稱圖形的關(guān)鍵是旋轉(zhuǎn)180°后能夠重合.12、C【解題分析】
先分別求出點(diǎn)P從點(diǎn)B出發(fā),沿B→C→D向終點(diǎn)D勻速運(yùn)動時(shí),當(dāng)0<x≤2和2<x≤4時(shí),y與x之間的函數(shù)關(guān)系式,即可得出函數(shù)的圖象.【題目詳解】由題意知,點(diǎn)P從點(diǎn)B出發(fā),沿B→C→D向終點(diǎn)D勻速運(yùn)動,則
當(dāng)0<x≤2,y=x,
當(dāng)2<x≤4,y=1,
由以上分析可知,這個(gè)分段函數(shù)的圖象是C.
故選C.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、18π【解題分析】
根據(jù)“三葉草”圖案中陰影部分的面積為三個(gè)扇形面積的和,利用扇形面積公式解答即可.【題目詳解】解:∵正六邊形的內(nèi)角為=120°,∴扇形的圓心角為360°?120°=240°,∴“三葉草”圖案中陰影部分的面積為=18π,故答案為18π.【題目點(diǎn)撥】此題考查正多邊形與圓,關(guān)鍵是根據(jù)“三葉草”圖案中陰影部分的面積為三個(gè)扇形面積的和解答.14、5【解題分析】試題分析:中心角的度數(shù)=,考點(diǎn):正多邊形中心角的概念.15、-6【解題分析】
分析:∵菱形的兩條對角線的長分別是6和4,∴A(﹣3,2).∵點(diǎn)A在反比例函數(shù)的圖象上,∴,解得k=-6.【題目詳解】請?jiān)诖溯斎朐斀猓?6、.【解題分析】
由題意可知一共有6種可能,經(jīng)過西流灣大橋的路線有2種可能,根據(jù)概率公式計(jì)算即可.【題目詳解】解:由題意可知一共有6種可能,經(jīng)過西流灣大橋的路線有2種可能,所以恰好選到經(jīng)過西流灣大橋的路線的概率=.故答案為.【題目點(diǎn)撥】本題考查的是用列表法或畫樹狀圖法求概率.注意列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.17、且【解題分析】分析:根據(jù)一元二次方程的定義以及根的判別式的意義可得△=4-12m>1且m≠1,求出m的取值范圍即可.詳解:∵一元二次方程mx2-2x+3=1有兩個(gè)不相等的實(shí)數(shù)根,∴△>1且m≠1,∴4-12m>1且m≠1,∴m<且m≠1,故答案為:m<且m≠1.點(diǎn)睛:本題考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c為常數(shù))根的判別式△=b2-4ac.當(dāng)△>1,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=1,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<1,方程沒有實(shí)數(shù)根.也考查了一元二次方程的定義.18、5【解題分析】
先利用旋轉(zhuǎn)的性質(zhì)得到BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,再利用等腰三角形的性質(zhì)和三角形內(nèi)角和定理證明∠ABD=∠A,則BD=AD,然后證明△BDC∽△ABC,則利用相似比得到BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,最后利用解方程求出AF與BF的比值.【題目詳解】∵如圖△EDB由△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)而來,D點(diǎn)落在AC上,∴BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,∵∠ABE=∠ADF,∴∠CBD=∠ADF,∵DB=BF,∴BF=BD=BC,而∠C=∠EDB,∴∠CBD=∠ABD,∴∠ABC=∠C=2∠ABD,∵∠BDC=∠A+∠ABD,∴∠ABD=∠A,∴BD=AD,∴CD=AF,∵AB=AC,∴∠ABC=∠C=∠BDC,∴△BDC∽△ABC,∴BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,整理得AF2+BF?AF-BF2=0,∴AF=﹣1+52BF,即AF與BF的比值為【題目點(diǎn)撥】本題主要考查了旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì)、相似三角形的性質(zhì),熟練掌握這些知識點(diǎn)并靈活運(yùn)用是解題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=﹣x2+2x+3;(2)當(dāng)t=或t=時(shí),△PCQ為直角三角形;(3)當(dāng)t=2時(shí),△ACQ的面積最大,最大值是1.【解題分析】
(1)根據(jù)拋物線的對稱軸與矩形的性質(zhì)可得點(diǎn)A的坐標(biāo),根據(jù)待定系數(shù)法可得拋物線的解析式;(2)先根據(jù)勾股定理可得CE,再分兩種情況:當(dāng)∠QPC=90°時(shí);當(dāng)∠PQC=90°時(shí);討論可得△PCQ為直角三角形時(shí)t的值;(3)根據(jù)待定系數(shù)法可得直線AC的解析式,根據(jù)S△ACQ=S△AFQ+S△CPQ可得S△ACQ==﹣(t﹣2)2+1,依此即可求解.【題目詳解】解:(1)∵拋物線的對稱軸為x=1,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4),點(diǎn)A在DE上,∴點(diǎn)A坐標(biāo)為(1,4),設(shè)拋物線的解析式為y=a(x﹣1)2+4,把C(3,0)代入拋物線的解析式,可得a(3﹣1)2+4=0,解得a=﹣1.故拋物線的解析式為y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)依題意有:OC=3,OE=4,∴CE===5,當(dāng)∠QPC=90°時(shí),∵cos∠QPC=,∴,解得t=;當(dāng)∠PQC=90°時(shí),∵cos∠QCP=,∴,解得t=.∴當(dāng)t=或t=時(shí),△PCQ為直角三角形;(3)∵A(1,4),C(3,0),設(shè)直線AC的解析式為y=kx+b,則有:,解得.故直線AC的解析式為y=﹣2x+2.∵P(1,4﹣t),將y=4﹣t代入y=﹣2x+2中,得x=1+,∴Q點(diǎn)的橫坐標(biāo)為1+,將x=1+代入y=﹣(x﹣1)2+4中,得y=4﹣.∴Q點(diǎn)的縱坐標(biāo)為4﹣,∴QF=(4﹣)﹣(4﹣t)=t﹣,∴S△ACQ=S△AFQ+S△CFQ=FQ?AG+FQ?DG,=FQ(AG+DG),=FQ?AD,=×2(t﹣),=﹣(t﹣2)2+1,∴當(dāng)t=2時(shí),△ACQ的面積最大,最大值是1.【題目點(diǎn)撥】考查了二次函數(shù)綜合題,涉及的知識點(diǎn)有:拋物線的對稱軸,矩形的性質(zhì),待定系數(shù)法求拋物線的解析式,待定系數(shù)法求直線的解析式,勾股定理,銳角三角函數(shù),三角形面積,二次函數(shù)的最值,方程思想以及分類思想的運(yùn)用.20、(1)見解析;(2)1.【解題分析】試題分析:根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等知作出∠A的平分線即可;根據(jù)平行四邊形的性質(zhì)可知AB=CD=5,AD∥BC,再根據(jù)角平分線的性質(zhì)和平行線的性質(zhì)得到∠BAE=∠BEA,再根據(jù)等腰三角形的性質(zhì)和線段的和差關(guān)系即可求解.試題解析:(1)如圖所示:E點(diǎn)即為所求.(2)∵四邊形ABCD是平行四邊形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分線,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=1.考點(diǎn):作圖—復(fù)雜作圖;平行四邊形的性質(zhì)21、(1)證明見解析(2)【解題分析】
(1)由點(diǎn)G是AE的中點(diǎn),根據(jù)垂徑定理可知OD⊥AE,由等腰三角形的性質(zhì)可得∠CBF=∠DFG,∠D=∠OBD,從而∠OBD+∠CBF=90°,從而可證結(jié)論;(2)連接AD,解Rt△OAG可求出OG=3,AG=4,進(jìn)而可求出DG的長,再證明△DAG∽△FDG,由相似三角形的性質(zhì)求出FG的長,再由勾股定理即可求出FD的長.【題目詳解】(1)∵點(diǎn)G是AE的中點(diǎn),∴OD⊥AE,∵FC=BC,∴∠CBF=∠CFB,∵∠CFB=∠DFG,∴∠CBF=∠DFG∵OB=OD,∴∠D=∠OBD,∵∠D+∠DFG=90°,∴∠OBD+∠CBF=90°即∠ABC=90°∵OB是⊙O的半徑,∴BC是⊙O的切線;(2)連接AD,∵OA=5,tanA=,∴OG=3,AG=4,∴DG=OD﹣OG=2,∵AB是⊙O的直徑,∴∠ADF=90°,∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°∴∠DAG=∠FDG,∴△DAG∽△FDG,∴,∴DG2=AG?FG,∴4=4FG,∴FG=1∴由勾股定理可知:FD=.【題目點(diǎn)撥】本題考查了垂徑定理,等腰三角形的性質(zhì),切線的判定,解直角三角形,相似三角形的判定與性質(zhì),勾股定理等知識,求出∠CBF=∠DFG,∠D=∠OBD是解(1)的關(guān)鍵,證明證明△DAG∽△FDG是解(2)的關(guān)鍵.22、(1)﹣2≤x<2;(2)x=.【解題分析】
(1)先求出不等式組中每個(gè)不等式的解集,再求出不等式組的解集即可;(2)先把分式方程轉(zhuǎn)化成整式方程,求出整式方程的解,再進(jìn)行檢驗(yàn)即可.【題目詳解】(1),∵解不等式①得:x<2,解不等式②得:x≥﹣2,∴不等式組的解集為﹣2≤x<2;(2)方程兩邊都乘以(2x﹣1)(x﹣2)得2x(x﹣2)+x(2x﹣1)=2(x﹣2)(2x﹣1),解得:x=,檢驗(yàn):把x=代入(2x﹣1)(x﹣2)≠0,所以x=是原方程的解,即原方程的解是x=.【題目點(diǎn)撥】本題考查了解一元一次不等式組和解分式方程,根據(jù)不等式的解集找出不等式組的解集是解(1)的關(guān)鍵,能把分式方程轉(zhuǎn)化成整式方程是解(2)的關(guān)鍵.23、(1)y1=a(x+1)2﹣1,頂點(diǎn)為(﹣1,﹣1);(2)①;②k的取值范圍是≤k≤或k=﹣1.【解題分析】
(1)化成頂點(diǎn)式即可求得;(2)①把點(diǎn)A(﹣3,1)代入二次函數(shù)C1:y1=ax2+2ax+a﹣1即可求得a的值;②根據(jù)對稱的性質(zhì)得出B的坐標(biāo),然后分兩種情況討論即可求得;【題目詳解】(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,∴頂點(diǎn)為(﹣1,﹣1);(2)①∵二次函數(shù)C1的圖象經(jīng)過點(diǎn)A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a=;②∵A(﹣3,1),對稱軸為直線x=﹣1,∴B(1,1),當(dāng)k>0時(shí),二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象經(jīng)過A(﹣3,1)時(shí),1=9k﹣3k,解得k=,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象經(jīng)過B(1,1)時(shí),1=k+k,解得k=,∴≤k≤,當(dāng)k<0時(shí),∵二次函數(shù)C2:y2=kx2+kx=k(x+)2﹣k,∴﹣k=1,∴k=﹣1,綜上,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個(gè)交點(diǎn),k的取值范圍是≤k≤或k=﹣1.【題目點(diǎn)撥】本題考查了二次函數(shù)和系數(shù)的關(guān)系,二次函數(shù)的最值問題,軸對稱的性質(zhì)等,分類討論是解題的關(guān)鍵.24、(1)證明見解析;(2).【解題分析】
(1)由BD是△ABC的角平分線,DE∥AB,可證得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可證得四邊形ADEF是平行四邊形;(2)過點(diǎn)E作EH⊥BD于點(diǎn)H,由∠ABC=60°,BD是∠ABC的平分線,可求得BH的長,從而求得BE、DE的長,即可求得答案.【題目詳解】(1)證明:∵BD是△ABC的角平分線,∴∠ABD=∠DBE,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴BE=DE;∵BE=AF,∴AF=DE;∴四邊形ADEF是平行四邊形;(2)解:過點(diǎn)E作EH⊥BD于點(diǎn)H.∵∠ABC=60°,BD是∠ABC的平分線,∴∠ABD=∠EBD=30°,∴DH=BD=×6=3,∵BE=DE,∴BH=DH=3,∴BE==,∴DE=BE=.【題目點(diǎn)撥】此題考查了平行四邊形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)以及三角函數(shù)等知識.注意掌握輔助線的作法.25、(1);(2);(3).【解題分析】
(1)將點(diǎn)代入二次函數(shù)解析式即可;(2)過點(diǎn)作軸,證明即可得到即可得出點(diǎn)A,B的坐標(biāo);(3)設(shè)點(diǎn)的坐標(biāo)為,解方程得出四邊形為平行四邊形,求出AC,AB的值,通過掃過區(qū)域的面積=代入計(jì)算即可.【題目詳解】解:(1)∵點(diǎn)在二次函數(shù)的圖象上,.解方程,得∴二次函數(shù)的表達(dá)式為.(2)如圖1,過點(diǎn)作軸,垂足為..,.在和中,∵,.∵點(diǎn)的坐標(biāo)為,..(3)如圖2,把沿軸正方向平移,當(dāng)點(diǎn)落在拋物線上點(diǎn)處時(shí),設(shè)點(diǎn)的坐標(biāo)為.解方程得:(舍去)或由平移的性質(zhì)知,且,∴四邊形為平行四邊形,.掃過區(qū)域的面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【全程復(fù)習(xí)方略】2020年高考政治一輪課時(shí)提升作業(yè)(9)-必修1-第4單元-第9課(江蘇專供)
- 安徽省蚌埠市A層高中2024-2025學(xué)年高二上學(xué)期第二次聯(lián)考地理試卷(含答案)
- 【原創(chuàng)】2013-2020學(xué)年高二數(shù)學(xué)必修四導(dǎo)學(xué)案:3.2二倍角的三角
- 【紅對勾】2021高考生物(人教版)一輪課時(shí)作業(yè):必修3-第6章-生態(tài)環(huán)境的保護(hù)
- 《胸腔鏡術(shù)后護(hù)理》課件
- 2024-2025學(xué)年廣東省汕頭市金平區(qū)七年級(上)期末數(shù)學(xué)試卷
- 五年級數(shù)學(xué)(小數(shù)乘法)計(jì)算題專項(xiàng)練習(xí)及答案匯編
- 【全程復(fù)習(xí)方略】2021年高中化學(xué)選修三課時(shí)達(dá)標(biāo)·效果檢測-第3章-晶體結(jié)構(gòu)與性質(zhì)3.4-
- 【優(yōu)化方案】2020-2021學(xué)年高一下學(xué)期數(shù)學(xué)(必修3)模塊綜合檢測
- 【志鴻優(yōu)化設(shè)計(jì)】2020高考地理(人教版)一輪教學(xué)案:第17章-第1講世界地理概況
- 列管式換熱器-換熱面積計(jì)算
- 10個(gè)地基基礎(chǔ)工程質(zhì)量通病及防治措施
- 25m預(yù)應(yīng)力混凝土簡支T梁橋設(shè)計(jì)(共30頁)
- 籃球校本課程教案
- 高一學(xué)生文理分班意向表
- 高等傳熱學(xué)部分答案
- 地球物理學(xué)進(jìn)展投稿須知
- 機(jī)床精度檢驗(yàn)標(biāo)準(zhǔn) VDI3441 a ISO230-2
- 七年級英語下冊任務(wù)型閱讀單元測試題(含答案)(word)
- 解析電力施工項(xiàng)目的信息化管理
- 火炬介紹 音速火炬等
評論
0/150
提交評論