版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆湖北省襄樊市中考數(shù)學(xué)對點突破模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.2018年1月份,菏澤市市區(qū)一周空氣質(zhì)量報告中某項污染指數(shù)的數(shù)據(jù)是41,45,41,44,40,42,41,這組數(shù)據(jù)的中位數(shù)、眾數(shù)分別是()A.42,41 B.41,42 C.41,41 D.42,452.的一個有理化因式是()A. B. C. D.3.下列運算正確的是()A.﹣3a+a=﹣4a B.3x2?2x=6x2C.4a2﹣5a2=a2 D.(2x3)2÷2x2=2x44.全球芯片制造已經(jīng)進入10納米到7納米器件的量產(chǎn)時代.中國自主研發(fā)的第一臺7納米刻蝕機,是芯片制造和微觀加工最核心的設(shè)備之一,7納米就是0.000000007米.數(shù)據(jù)0.000000007用科學(xué)計數(shù)法表示為()A. B. C. D.5.已知一次函數(shù)y=ax﹣x﹣a+1(a為常數(shù)),則其函數(shù)圖象一定過象限()A.一、二 B.二、三 C.三、四 D.一、四6.一元二次方程3x2-6x+4=0根的情況是A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根 C.有兩個實數(shù)根 D.沒有實數(shù)根7.已知等腰三角形的兩邊長分別為5和6,則這個等腰三角形的周長為()A.11 B.16 C.17 D.16或178.在同一平面直角坐標系中,函數(shù)y=x+k與(k為常數(shù),k≠0)的圖象大致是()A. B.C. D.9.下列關(guān)于x的方程一定有實數(shù)解的是()A. B.C. D.10.如圖所示,,結(jié)論:①;②;③;④,其中正確的是有()A.1個 B.2個 C.3個 D.4個二、填空題(共7小題,每小題3分,滿分21分)11.已知點M(1,2)在反比例函數(shù)y=k12.點A(﹣3,y1),B(2,y2),C(3,y3)在拋物線y=2x2﹣4x+c上,則y1,y2,y3的大小關(guān)系是_____.13.如圖,在中,.的半徑為2,點是邊上的動點,過點作的一條切線(點為切點),則線段長的最小值為______.14.如圖,在平面直角坐標系中,將矩形AOCD沿直線AE折疊(點E在邊DC上),折疊后頂點D恰好落在邊OC上的點F處.若點D的坐標為(10,8),則點E的坐標為.15.如圖,在Rt△ABC中,∠ACB=90°,點D、E、F分別是AB、AC、BC的中點,若CD=5,則EF的長為________.16.有一組數(shù)據(jù):3,a,4,6,7,它們的平均數(shù)是5,則a=_____,這組數(shù)據(jù)的方差是_____.17.如圖所示,過y軸正半軸上的任意一點P,作x軸的平行線,分別與反比例函數(shù)的圖象交于點A和點B,若點C是x軸上任意一點,連接AC、BC,則△ABC的面積為_________.三、解答題(共7小題,滿分69分)18.(10分)如圖,一次函數(shù)y1=kx+b(k≠0)和反比例函數(shù)y2=(m≠0)的圖象交于點A(-1,6),B(a,-2).求一次函數(shù)與反比例函數(shù)的解析式;根據(jù)圖象直接寫出y1>y2時,x的取值范圍.19.(5分)某學(xué)校2017年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費2000元,購買乙種足球共花費1400元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍.且購買一個乙種足球比購買一個甲種足球多花20元;(1)求購買一個甲種足球、一個乙種足球各需多少元;(2)2018年這所學(xué)校決定再次購買甲、乙兩種足球共50個.恰逢該商場對兩種足球的售價進行調(diào)整,甲種足球售價比第一次購買時提高了10%,乙種足球售價比第一次購買時降低了10%.如果此次購買甲、乙兩種足球的總費用不超過2910元,那么這所學(xué)校最多可購買多少個乙種足球?20.(8分)(問題情境)張老師給愛好學(xué)習(xí)的小軍和小俊提出這樣的一個問題:如圖1,在△ABC中,AB=AC,點P為邊BC上任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點C作CF⊥AB,垂足為F,求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過點P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.[變式探究]如圖3,當(dāng)點P在BC延長線上時,其余條件不變,求證:PD﹣PE=CF;請運用上述解答中所積累的經(jīng)驗和方法完成下列兩題:[結(jié)論運用]如圖4,將矩形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖5是一個航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點,ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點,連接DM、CN,求△DEM與△CEN的周長之和.21.(10分)如圖,已知拋物線y=ax2+2x+8與x軸交于A,B兩點,與y軸交于點C,且B(4,0).(1)求拋物線的解析式及其頂點D的坐標;(2)如果點P(p,0)是x軸上的一個動點,則當(dāng)|PC﹣PD|取得最大值時,求p的值;(3)能否在拋物線第一象限的圖象上找到一點Q,使△QBC的面積最大,若能,請求出點Q的坐標;若不能,請說明理由.22.(10分)如圖,已知Rt△ABC中,∠C=90°,D為BC的中點,以AC為直徑的⊙O交AB于點E.(1)求證:DE是⊙O的切線;(2)若AE:EB=1:2,BC=6,求⊙O的半徑.23.(12分)如圖,拋物線y=ax2+ax﹣12a(a<0)與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C,點M是第二象限內(nèi)拋物線上一點,BM交y軸于N.(1)求點A、B的坐標;(2)若BN=MN,且S△MBC=,求a的值;(3)若∠BMC=2∠ABM,求的值.24.(14分)風(fēng)電已成為我國繼煤電、水電之后的第三大電源,風(fēng)電機組主要由塔桿和葉片組成(如圖①),圖②是平面圖.光明中學(xué)的數(shù)學(xué)興趣小組針對風(fēng)電塔桿進行了測量,甲同學(xué)站在平地上的A處測得塔桿頂端C的仰角是55°,乙同學(xué)站在巖石B處測得葉片的最高位置D的仰角是45°(D,C,H在同一直線上,G,A,H在同一條直線上),他們事先從相關(guān)部門了解到葉片的長度為15米(塔桿與葉片連接處的長度忽略不計),巖石高BG為4米,兩處的水平距離AG為23米,BG⊥GH,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】
找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個.【題目詳解】從小到大排列此數(shù)據(jù)為:40,1,1,1,42,44,45,數(shù)據(jù)1出現(xiàn)了三次最多為眾數(shù),1處在第4位為中位數(shù).所以本題這組數(shù)據(jù)的中位數(shù)是1,眾數(shù)是1.故選C.【題目點撥】考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學(xué)生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項.注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求.如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).2、B【解題分析】
找出原式的一個有理化因式即可.【題目詳解】的一個有理化因式是,故選B.【題目點撥】此題考查了分母有理化,熟練掌握有理化因式的取法是解本題的關(guān)鍵.3、D【解題分析】
根據(jù)合并同類項、單項式的乘法、積的乘方和單項式的乘法逐項計算,結(jié)合排除法即可得出答案.【題目詳解】A.﹣3a+a=﹣2a,故不正確;B.3x2?2x=6x3,故不正確;C.4a2﹣5a2=-a2,故不正確;D.(2x3)2÷2x2=4x6÷2x2=2x4,故正確;故選D.【題目點撥】本題考查了合并同類項、單項式的乘法、積的乘方和單項式的乘法,熟練掌握它們的運算法則是解答本題的關(guān)鍵.4、A【解題分析】
絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【題目詳解】數(shù)據(jù)0.000000007用科學(xué)記數(shù)法表示為7×10-1.故選A.【題目點撥】本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.5、D【解題分析】分析:根據(jù)一次函數(shù)的圖形與性質(zhì),由一次函數(shù)y=kx+b的系數(shù)k和b的符號,判斷所過的象限即可.詳解:∵y=ax﹣x﹣a+1(a為常數(shù)),∴y=(a-1)x-(a-1)當(dāng)a-1>0時,即a>1,此時函數(shù)的圖像過一三四象限;當(dāng)a-1<0時,即a<1,此時函數(shù)的圖像過一二四象限.故其函數(shù)的圖像一定過一四象限.故選D.點睛:此題主要考查了一次函數(shù)的圖像與性質(zhì),利用一次函數(shù)的圖像與性質(zhì)的關(guān)系判斷即可.一次函數(shù)y=kx+b(k≠0,k、b為常數(shù))的圖像與性質(zhì):當(dāng)k>0,b>0時,圖像過一二三象限,y隨x增大而增大;當(dāng)k>0,b<0時,圖像過一三四象限,y隨x增大而增大;當(dāng)k<0,b>0時,圖像過一二四象限,y隨x增大而減小;當(dāng)k<0,b<0,圖像過二三四象限,y隨x增大而減小.6、D【解題分析】
根據(jù)?=b2-4ac,求出?的值,然后根據(jù)?的值與一元二次方程根的關(guān)系判斷即可.【題目詳解】∵a=3,b=-6,c=4,∴?=b2-4ac=(-6)2-4×3×4=-12<0,∴方程3x2-6x+4=0沒有實數(shù)根.故選D.【題目點撥】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac:當(dāng)?>0時,一元二次方程有兩個不相等的實數(shù)根;當(dāng)?=0時,一元二次方程有兩個相等的實數(shù)根;當(dāng)?<0時,一元二次方程沒有實數(shù)根.7、D【解題分析】試題分析:由等腰三角形的兩邊長分別是5和6,可以分情況討論其邊長為5,5,6或者5,6,6,均滿足三角形兩邊之和大于第三邊,兩邊之差小于第三邊的條件,所以此等腰三角形的周長為5+5+6=16或5+6+6=17.故選項D正確.考點:三角形三邊關(guān)系;分情況討論的數(shù)學(xué)思想8、B【解題分析】
選項A中,由一次函數(shù)y=x+k的圖象知k<0,由反比例函數(shù)y=的圖象知k>0,矛盾,所以選項A錯誤;選項B中,由一次函數(shù)y=x+k的圖象知k>0,由反比例函數(shù)y=的圖象知k>0,正確,所以選項B正確;由一次函數(shù)y=x+k的圖象知,函數(shù)圖象從左到右上升,所以選項C、D錯誤.故選B.9、A【解題分析】
根據(jù)一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根逐一判斷即可得.【題目詳解】A.x2-mx-1=0中△=m2+4>0,一定有兩個不相等的實數(shù)根,符合題意;
B.a(chǎn)x=3中當(dāng)a=0時,方程無解,不符合題意;
C.由可解得不等式組無解,不符合題意;
D.有增根x=1,此方程無解,不符合題意;
故選A.【題目點撥】本題主要考查方程的解,解題的關(guān)鍵是掌握一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根.10、C【解題分析】
根據(jù)已知的條件,可由AAS判定△AEB≌△AFC,進而可根據(jù)全等三角形得出的結(jié)論來判斷各選項是否正確.【題目詳解】解:如圖:在△AEB和△AFC中,有,∴△AEB≌△AFC;(AAS)∴∠FAM=∠EAN,∴∠EAN-∠MAN=∠FAM-∠MAN,即∠EAM=∠FAN;(故③正確)又∵∠E=∠F=90°,AE=AF,∴△EAM≌△FAN;(ASA)∴EM=FN;(故①正確)由△AEB≌△AFC知:∠B=∠C,AC=AB;又∵∠CAB=∠BAC,∴△ACN≌△ABM;(故④正確)由于條件不足,無法證得②CD=DN;故正確的結(jié)論有:①③④;故選C.【題目點撥】此題主要考查的是全等三角形的判定和性質(zhì),做題時要從最容易,最簡單的開始,由易到難.二、填空題(共7小題,每小題3分,滿分21分)11、-2【解題分析】k==1×(-2)=-212、y2<y3<y1【解題分析】
把點的坐標分別代入拋物線解析式可分別求得y1、y2、y3的值,比較可求得答案.【題目詳解】∵y=2x2-4x+c,∴當(dāng)x=-3時,y1=2×(-3)2-4×(-3)+c=30+c,當(dāng)x=2時,y2=2×22-4×2+c=c,當(dāng)x=3時,y3=2×32-4×3+c=6+c,∵c<6+c<30+c,∴y2<y3<y1,故答案為y2<y3<y1.【題目點撥】本題主要考查二次函數(shù)圖象上點的坐標特征,掌握函數(shù)圖象上點的坐標滿足函數(shù)解析式是解題的關(guān)鍵.13、【解題分析】
連接,根據(jù)勾股定理知,可得當(dāng)時,即線段最短,然后由勾股定理即可求得答案.【題目詳解】連接.∵是的切線,∴;∴,∴當(dāng)時,線段OP最短,∴PQ的長最短,∵在中,,∴,∴,∴.故答案為:.【題目點撥】本題考查了切線的性質(zhì)、等腰直角三角形的性質(zhì)以及勾股定理.此題難度適中,注意掌握輔助線的作法,得到時,線段最短是關(guān)鍵.14、(10,3)【解題分析】
根據(jù)折疊的性質(zhì)得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后設(shè)EC=x,則EF=DE=8-x,CF=10-6=4,根據(jù)勾股定理列方程求出EC可得點E的坐標.【題目詳解】∵四邊形AOCD為矩形,D的坐標為(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折疊,使D落在BC上的點F處,∴AD=AF=10,DE=EF,在Rt△AOF中,OF==6,∴FC=10?6=4,設(shè)EC=x,則DE=EF=8?x,在Rt△CEF中,EF2=EC2+FC2,即(8?x)2=x2+42,解得x=3,即EC的長為3.∴點E的坐標為(10,3).15、5【解題分析】
已知CD是Rt△ABC斜邊AB的中線,那么AB=2CD;EF是△ABC的中位線,則EF應(yīng)等于AB的一半.【題目詳解】∵△ABC是直角三角形,CD是斜邊的中線,∴CD=AB,又∵EF是△ABC的中位線,∴AB=2CD=2×5=10,∴EF=×10=5.故答案為5.【題目點撥】本題主要考查三角形中位線定理,直角三角形斜邊上的中線,熟悉掌握是關(guān)鍵.16、51.【解題分析】∵一組數(shù)據(jù):3,a,4,6,7,它們的平均數(shù)是5,∴,解得,,∴=1.故答案為5,1.17、1.【解題分析】
設(shè)P(0,b),∵直線APB∥x軸,∴A,B兩點的縱坐標都為b,而點A在反比例函數(shù)y=的圖象上,∴當(dāng)y=b,x=-,即A點坐標為(-,b),又∵點B在反比例函數(shù)y=的圖象上,∴當(dāng)y=b,x=,即B點坐標為(,b),∴AB=-(-)=,∴S△ABC=?AB?OP=??b=1.三、解答題(共7小題,滿分69分)18、(1)y1=-2x+4,y2=-;(2)x<-1或0<x<1.【解題分析】
(1)把點A坐標代入反比例函數(shù)求出k的值,也就求出了反比例函數(shù)解析式,再把點B的坐標代入反比例函數(shù)解析式求出a的值,得到點B的坐標,然后利用待定系數(shù)法即可求出一次函數(shù)解析式;(2)找出直線在一次函數(shù)圖形的上方的自變量x的取值即可.【題目詳解】解:(1)把點A(﹣1,6)代入反比例函數(shù)(m≠0)得:m=﹣1×6=﹣6,∴.將B(a,﹣2)代入得:,a=1,∴B(1,﹣2),將A(﹣1,6),B(1,﹣2)代入一次函數(shù)y1=kx+b得:,∴,∴;(2)由函數(shù)圖象可得:x<﹣1或0<x<1.【題目點撥】本題考查反比例函數(shù)與一次函數(shù)的交點問題,利用數(shù)形結(jié)合思想解題是本題的關(guān)鍵.19、(1)購買一個甲種足球需要50元,購買一個乙種籃球需要1元(2)這所學(xué)校最多可購買2個乙種足球【解題分析】
(1)根據(jù)題意可以列出相應(yīng)的分式方程,從而可以求得購買一個甲種足球、一個乙種足球各需多少元;(2)根據(jù)題意可以列出相應(yīng)的不等式,從而可以求得這所學(xué)校最多可購買多少個乙種足球.【題目詳解】(1)設(shè)購買一個甲種足球需要x元,則購買一個乙種籃球需要(x+2)元,根據(jù)題意得:,解得:x=50,經(jīng)檢驗,x=50是原方程的解,且符合題意,∴x+2=1.答:購買一個甲種足球需要50元,購買一個乙種籃球需要1元.(2)設(shè)可購買m個乙種足球,則購買(50﹣m)個甲種足球,根據(jù)題意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,解得:m≤2.答:這所學(xué)校最多可購買2個乙種足球.【題目點撥】本題考查分式方程的應(yīng)用,一元一次不等式的應(yīng)用,解答此類問題的關(guān)鍵是明確題意,列出相應(yīng)的分式方程和一元一次不等式,注意分式方程要檢驗,問題(2)要與實際相聯(lián)系.20、小軍的證明:見解析;小俊的證明:見解析;[變式探究]見解析;[結(jié)論運用]PG+PH的值為1;[遷移拓展](6+2)dm【解題分析】
小軍的證明:連接AP,利用面積法即可證得;小俊的證明:過點P作PG⊥CF,先證明四邊形PDFG為矩形,再證明△PGC≌△CEP,即可得到答案;[變式探究]小軍的證明思路:連接AP,根據(jù)S△ABC=S△ABP﹣S△ACP,即可得到答案;小俊的證明思路:過點C,作CG⊥DP,先證明四邊形CFDG是矩形,再證明△CGP≌△CEP即可得到答案;[結(jié)論運用]過點E作EQ⊥BC,先根據(jù)矩形的性質(zhì)求出BF,根據(jù)翻折及勾股定理求出DC,證得四邊形EQCD是矩形,得出BE=BF即可得到答案;[遷移拓展]延長AD,BC交于點F,作BH⊥AF,證明△ADE∽△BCE得到FA=FB,設(shè)DH=x,利用勾股定理求出x得到BH=6,再根據(jù)∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點即可得到答案.【題目詳解】小軍的證明:連接AP,如圖②∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP+S△ACP,∴AB×CF=AB×PD+AC×PE,∵AB=AC,∴CF=PD+PE.小俊的證明:過點P作PG⊥CF,如圖2,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°,∴四邊形PDFG為矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=∠ACB,∴∠GPC=∠ECP,在△PGC和△CEP中,∴△PGC≌△CEP,∴CG=PE,∴CF=CG+FG=PE+PD;[變式探究]小軍的證明思路:連接AP,如圖③,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP﹣S△ACP,∴AB×CF=AB×PD﹣AC×PE,∵AB=AC,∴CF=PD﹣PE;小俊的證明思路:過點C,作CG⊥DP,如圖③,∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDG=∠DGC=90°,∴CF=GD,∠DGC=90°,四邊形CFDG是矩形,∵PE⊥AC,∴∠CEP=90°,∴∠CGP=∠CEP,∵CG⊥DP,AB⊥DP,∴∠CGP=∠BDP=90°,∴CG∥AB,∴∠GCP=∠B,∵AB=AC,∴∠B=∠ACB,∵∠ACB=∠PCE,∴∠GCP=∠ECP,在△CGP和△CEP中,,∴△CGP≌△CEP,∴PG=PE,∴CF=DG=DP﹣PG=DP﹣PE.[結(jié)論運用]如圖④過點E作EQ⊥BC,∵四邊形ABCD是矩形,∴AD=BC,∠C=∠ADC=90°,∵AD=8,CF=3,∴BF=BC﹣CF=AD﹣CF=5,由折疊得DF=BF,∠BEF=∠DEF,∴DF=5,∵∠C=90°,∴DC==1,∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC,∴四邊形EQCD是矩形,∴EQ=DC=1,∵AD∥BC,∴∠DEF=∠EFB,∵∠BEF=∠DEF,∴∠BEF=∠EFB,∴BE=BF,由問題情景中的結(jié)論可得:PG+PH=EQ,∴PG+PH=1.∴PG+PH的值為1.[遷移拓展]延長AD,BC交于點F,作BH⊥AF,如圖⑤,∵AD×CE=DE×BC,∴,∵ED⊥AD,EC⊥CB,∴∠ADE=∠BCE=90°,∴△ADE∽△BCE,∴∠A=∠CBE,∴FA=FB,由問題情景中的結(jié)論可得:ED+EC=BH,設(shè)DH=x,∴AH=AD+DH=3+x,∵BH⊥AF,∴∠BHA=90°,∴BH2=BD2﹣DH2=AB2﹣AH2,∵AB=2,AD=3,BD=,∴()2﹣x2=(2)2﹣(3+x)2,∴x=1,∴BH2=BD2﹣DH2=37﹣1=36,∴BH=6,∴ED+EC=6,∵∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點,∴DM=EM=AE,CN=EN=BE,∴△DEM與△CEN的周長之和=DE+DM+EM+CN+EN+EC=DE+AE+BE+EC=DE+AB+EC=DE+EC+AB=6+2,∴△DEM與△CEN的周長之和(6+2)dm.【題目點撥】此題是一道綜合題,考查三角形全等的判定及性質(zhì),勾股定理,矩形的性質(zhì)定理,三角形的相似的判定及性質(zhì)定理,翻折的性質(zhì),根據(jù)題中小軍和小俊的思路進行證明,故正確理解題意由此進行后面的證明是解題的關(guān)鍵.21、(1)y=﹣(x﹣1)2+9,D(1,9);(2)p=﹣1;(3)存在點Q(2,1)使△QBC的面積最大.【解題分析】分析:(1)把點B的坐標代入y=ax2+2x+1求得a的值,即可得到該拋物線的解析式,再把所得解析式配方化為頂點式,即可得到拋物線頂點D的坐標;(2)由題意可知點P在直線CD上時,|PC﹣PD|取得最大值,因此,求得點C的坐標,再求出直CD的解析式,即可求得符合條件的點P的坐標,從而得到p的值;(3)由(1)中所得拋物線的解析式設(shè)點Q的坐標為(m,﹣m2+2m+1)(0<m<4),然后用含m的代數(shù)式表達出△BCQ的面積,并將所得表達式配方化為頂點式即可求得對應(yīng)點Q的坐標.詳解:(1)∵拋物線y=ax2+2x+1經(jīng)過點B(4,0),∴16a+1+1=0,∴a=﹣1,∴拋物線的解析式為y=﹣x2+2x+1=﹣(x﹣1)2+9,∴D(1,9);(2)∵當(dāng)x=0時,y=1,∴C(0,1).設(shè)直線CD的解析式為y=kx+b.將點C、D的坐標代入得:,解得:k=1,b=1,∴直線CD的解析式為y=x+1.當(dāng)y=0時,x+1=0,解得:x=﹣1,∴直線CD與x軸的交點坐標為(﹣1,0).∵當(dāng)P在直線CD上時,|PC﹣PD|取得最大值,∴p=﹣1;(3)存在,理由:如圖,由(2)知,C(0,1),∵B(4,0),∴直線BC的解析式為y=﹣2x+1,過點Q作QE∥y軸交BC于E,設(shè)Q(m,﹣m2+2m+1)(0<m<4),則點E的坐標為:(m,﹣2m+1),∴EQ=﹣m2+2m+1﹣(﹣2m+1)=﹣m2+4m,∴S△QBC=(﹣m2+4m)×4=﹣2(m﹣2)2+1,∴m=2時,S△QBC最大,此時點Q的坐標為:(2,1).點睛:(1)解第2小題時,知道當(dāng)點P在直線CD上時,|PC﹣PD|的值最大,是找到解題思路的關(guān)鍵;(2)解第3小題的關(guān)鍵是設(shè)出點Q的坐標(m,﹣m2+2m+1)(0<m<4),并結(jié)合點B、C的坐標把△BCQ的面積用含m的代數(shù)式表達出來.22、(1)證明見解析;(1)32【解題分析】試題分析:(1)求出∠OED=∠BCA=90°,根據(jù)切線的判定即可得出結(jié)論;(1)求出△BEC∽△BCA,得出比例式,代入求出即可.試題解析:(1)證明:連接OE、EC.∵AC是⊙O的直徑,∴∠AEC=∠BEC=90°.∵D為BC的中點,∴ED=DC=BD,∴∠1=∠1.∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠1+∠4,即∠OED=∠ACB.∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切線;(1)由(1)知:∠BEC=90°.在Rt△BEC與Rt△BCA中,∵∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴BE:BC=BC:BA,∴BC1=BE?BA.∵AE:EB=1:1,設(shè)AE=x,則BE=1x,BA=3x.∵BC=6,∴61=1x?3x,解得:x=6,即AE=6,∴AB=36,∴AC=AB2-BC2=點睛:本題考查了切線的判定和相
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鋁合金門窗安裝合同書樣本
- 川氣利用合同供應(yīng)
- 室內(nèi)設(shè)計裝修合同書范例
- 股權(quán)轉(zhuǎn)讓股東協(xié)議書2024年
- 餐飲服務(wù)供應(yīng)合同
- 2024年物流員工勞動合同
- 土地房屋購買協(xié)議范本
- 中學(xué)教師合同書樣本
- 杭州市租房協(xié)議范本
- 二手房交易買賣合同范本2024年
- 期中模擬檢測(試題) 2024-2025學(xué)年五年級上冊數(shù)學(xué)北師大版
- 統(tǒng)編版(2024新版)七年級上冊歷史第三單元 秦漢時期:復(fù)習(xí)課件
- 體格檢查神經(jīng)系統(tǒng)檢查課件
- 【核心素養(yǎng)目標】13.3.1.2 等腰三角形的判定教案人教版數(shù)學(xué)八年級上冊
- 北京版小學(xué)英語1至6年級詞匯
- 5.3 善用法律 課件-2024-2025學(xué)年統(tǒng)編版道德與法治八年級上冊
- 琉璃瓦安裝施工合同
- 心臟心內(nèi)膜肉瘤的藥物治療進展與展望
- 光伏發(fā)電工程建設(shè)標準工藝手冊(2023版)
- DL∕T 875-2016 架空輸電線路施工機具基本技術(shù)要求
- NB-T+10908-2021風(fēng)電機組混凝土-鋼混合塔筒施工規(guī)范
評論
0/150
提交評論