人教A版高中數(shù)學(xué)(選擇性必修第一冊(cè))同步講義第27講 3.1.2橢圓的簡(jiǎn)單幾何性質(zhì)(原卷版)_第1頁(yè)
人教A版高中數(shù)學(xué)(選擇性必修第一冊(cè))同步講義第27講 3.1.2橢圓的簡(jiǎn)單幾何性質(zhì)(原卷版)_第2頁(yè)
人教A版高中數(shù)學(xué)(選擇性必修第一冊(cè))同步講義第27講 3.1.2橢圓的簡(jiǎn)單幾何性質(zhì)(原卷版)_第3頁(yè)
人教A版高中數(shù)學(xué)(選擇性必修第一冊(cè))同步講義第27講 3.1.2橢圓的簡(jiǎn)單幾何性質(zhì)(原卷版)_第4頁(yè)
人教A版高中數(shù)學(xué)(選擇性必修第一冊(cè))同步講義第27講 3.1.2橢圓的簡(jiǎn)單幾何性質(zhì)(原卷版)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第02講3.1.2橢圓的簡(jiǎn)單幾何性質(zhì)課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①掌握橢圓的簡(jiǎn)單幾何性質(zhì),了解橢圓中a,b,c,e的幾何意義。②會(huì)根據(jù)橢圓的方程解決橢圓的幾何性質(zhì),會(huì)用橢圓的幾何意義解決相關(guān)問(wèn)題。③會(huì)判斷點(diǎn)與橢圓、直線與橢圓的位置關(guān)系,會(huì)求直線與橢圓相交的弦長(zhǎng)。通過(guò)本節(jié)課的學(xué)習(xí),要求掌握橢圓的幾何量a,b,c,e的意義,會(huì)利用幾何量之間的關(guān)系,求相關(guān)幾何量的大小,會(huì)利用橢圓的幾何性質(zhì)解決與橢圓有關(guān)的點(diǎn)、弦、周長(zhǎng)、面積等問(wèn)題。知識(shí)點(diǎn)01:橢圓的簡(jiǎn)單幾何性質(zhì)焦點(diǎn)的位置焦點(diǎn)在SKIPIF1<0軸上焦點(diǎn)在SKIPIF1<0軸上圖形標(biāo)準(zhǔn)方程SKIPIF1<0(SKIPIF1<0)SKIPIF1<0(SKIPIF1<0)范圍SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0頂點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0軸長(zhǎng)短軸長(zhǎng)=SKIPIF1<0,長(zhǎng)軸長(zhǎng)=SKIPIF1<0焦點(diǎn)SKIPIF1<0SKIPIF1<0焦距SKIPIF1<0對(duì)稱性對(duì)稱軸:SKIPIF1<0軸、SKIPIF1<0軸對(duì)稱中心:原點(diǎn)離心率SKIPIF1<0,SKIPIF1<0【即學(xué)即練1】(2023春·河北石家莊·高二正定中學(xué)校考階段練習(xí))若橢圓SKIPIF1<0的離心率為SKIPIF1<0,則橢圓SKIPIF1<0的長(zhǎng)軸長(zhǎng)為.【答案】SKIPIF1<0或SKIPIF1<0【詳解】因?yàn)闄E圓SKIPIF1<0的離心率為SKIPIF1<0,易知SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),橢圓焦點(diǎn)在SKIPIF1<0軸上,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,所以橢圓的長(zhǎng)軸長(zhǎng)為SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),橢圓焦點(diǎn)在SKIPIF1<0軸上,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,滿足題意,此時(shí)SKIPIF1<0,所以橢圓的長(zhǎng)軸長(zhǎng)為SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.知識(shí)點(diǎn)02:橢圓的簡(jiǎn)單幾何性質(zhì)離心率:橢圓焦距與長(zhǎng)軸長(zhǎng)之比:SKIPIF1<0SKIPIF1<0SKIPIF1<0.(SKIPIF1<0)當(dāng)SKIPIF1<0越接近1時(shí),SKIPIF1<0越接近SKIPIF1<0,橢圓越扁;當(dāng)SKIPIF1<0越接近0時(shí),SKIPIF1<0越接近0,橢圓越接近圓;當(dāng)且僅當(dāng)SKIPIF1<0時(shí),圖形為圓,方程為SKIPIF1<0【即學(xué)即練2】(2023春·云南玉溪·高二云南省玉溪第三中學(xué)??计谀┮阎獧E圓E:SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,左頂點(diǎn)為SKIPIF1<0,若E上的點(diǎn)P滿足SKIPIF1<0軸,SKIPIF1<0,則E的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】設(shè)SKIPIF1<0,則直線SKIPIF1<0:SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,

而SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,有SKIPIF1<0,又SKIPIF1<0,因此SKIPIF1<0,所以E的離心率為SKIPIF1<0.故選:A知識(shí)點(diǎn)03:常用結(jié)論1、與橢圓SKIPIF1<0SKIPIF1<0共焦點(diǎn)的橢圓方程可設(shè)為:SKIPIF1<0SKIPIF1<02、有相同離心率:SKIPIF1<0(SKIPIF1<0,焦點(diǎn)在SKIPIF1<0軸上)或SKIPIF1<0(SKIPIF1<0,焦點(diǎn)在SKIPIF1<0軸上)3、橢圓SKIPIF1<0的圖象中線段的幾何特征(如下圖):(1)SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(3)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;知識(shí)點(diǎn)04:直線與橢圓的位置關(guān)系1、直線與橢圓的位置關(guān)系將直線的方程SKIPIF1<0與橢圓的方程SKIPIF1<0SKIPIF1<0聯(lián)立成方程組,消元轉(zhuǎn)化為關(guān)于SKIPIF1<0或SKIPIF1<0的一元二次方程,其判別式為SKIPIF1<0.①SKIPIF1<0SKIPIF1<0直線和橢圓相交SKIPIF1<0直線和橢圓有兩個(gè)交點(diǎn)(或兩個(gè)公共點(diǎn));②SKIPIF1<0SKIPIF1<0直線和橢圓相切SKIPIF1<0直線和橢圓有一個(gè)切點(diǎn)(或一個(gè)公共點(diǎn));③SKIPIF1<0SKIPIF1<0直線和橢圓相離SKIPIF1<0直線和橢圓無(wú)公共點(diǎn).【即學(xué)即練3】(2023春·江西吉安·高二校考期中)直線SKIPIF1<0與橢圓SKIPIF1<0的位置關(guān)系是(

)A.相離 B.相切 C.相交 D.無(wú)法確定【答案】C【詳解】聯(lián)立SKIPIF1<0,則SKIPIF1<0所以方程有兩個(gè)不相等的實(shí)數(shù)根,所以直線與橢圓相交故選:C.2、直線與橢圓的相交弦直線與橢圓問(wèn)題(韋達(dá)定理的運(yùn)用)(1)弦長(zhǎng)公式:若直線SKIPIF1<0與圓錐曲線相交與SKIPIF1<0、SKIPIF1<0兩點(diǎn),SKIPIF1<0則:弦長(zhǎng)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0弦長(zhǎng)SKIPIF1<0SKIPIF1<0這里SKIPIF1<0SKIPIF1<0的求法通常使用韋達(dá)定理,需作以下變形:SKIPIF1<0;SKIPIF1<0(2)結(jié)論1:已知弦SKIPIF1<0是橢圓SKIPIF1<0(SKIPIF1<0)的一條弦,中點(diǎn)SKIPIF1<0坐標(biāo)為SKIPIF1<0,則SKIPIF1<0的斜率為SKIPIF1<0運(yùn)用點(diǎn)差法求SKIPIF1<0的斜率,設(shè)SKIPIF1<0,SKIPIF1<0;SKIPIF1<0、SKIPIF1<0都在橢圓上,SKIPIF1<0兩式相減得:SKIPIF1<0,SKIPIF1<0即SKIPIF1<0,故SKIPIF1<0結(jié)論2:弦SKIPIF1<0的斜率與弦中心SKIPIF1<0和橢圓中心SKIPIF1<0的連線的斜率之積為定值:SKIPIF1<0(3).已知橢圓方程SKIPIF1<0,長(zhǎng)軸端點(diǎn)為SKIPIF1<0,SKIPIF1<0,焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是橢圓上一點(diǎn),SKIPIF1<0.求:SKIPIF1<0的面積(用SKIPIF1<0、SKIPIF1<0、SKIPIF1<0表示).設(shè)SKIPIF1<0,由橢圓的對(duì)稱性,不妨設(shè)SKIPIF1<0,由橢圓的對(duì)稱性,不妨設(shè)SKIPIF1<0在第一象限.由余弦定理知:SKIPIF1<0SKIPIF1<0SKIPIF1<0·SKIPIF1<0①由橢圓定義知:SKIPIF1<0②,則SKIPIF1<0得SKIPIF1<0故SKIPIF1<0SKIPIF1<0SKIPIF1<0【即學(xué)即練4】(2023·全國(guó)·高三對(duì)口高考)通過(guò)橢圓SKIPIF1<0的焦點(diǎn)且垂直于x軸的直線l被橢圓截得的弦長(zhǎng)等于(

)A.SKIPIF1<0 B.3 C.SKIPIF1<0 D.6【答案】B【詳解】由題設(shè),不妨設(shè)過(guò)焦點(diǎn)SKIPIF1<0且垂直于x軸的直線SKIPIF1<0,代入橢圓方程得SKIPIF1<0,可得SKIPIF1<0,故被橢圓截得的弦長(zhǎng)等于SKIPIF1<0.故選:B題型01根據(jù)橢圓的標(biāo)準(zhǔn)方程研究其幾何性質(zhì)【典例1】(2023春·上海楊浦·高二??计谥校E圓SKIPIF1<0與橢圓SKIPIF1<0的(

)A.長(zhǎng)軸相等 B.短軸相等 C.焦距相等 D.長(zhǎng)軸、短軸、焦距均不相等【典例2】(2023秋·高二課時(shí)練習(xí))已知P點(diǎn)是橢圓SKIPIF1<0上的動(dòng)點(diǎn),A點(diǎn)坐標(biāo)為SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例3】(2023秋·浙江湖州·高二統(tǒng)考期末)橢圓SKIPIF1<0的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)、離心率依次是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1】(2023春·廣東茂名·高二統(tǒng)考期末)已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,下頂點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0上的任意一點(diǎn),則SKIPIF1<0的最大值是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023·全國(guó)·高三專題練習(xí))若橢圓SKIPIF1<0的離心率為SKIPIF1<0,則橢圓SKIPIF1<0的長(zhǎng)軸長(zhǎng)為(

)A.6 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【變式3】(2023秋·高二課時(shí)練習(xí))橢圓SKIPIF1<0的焦距為4,則m的值為.題型02根據(jù)橢圓的幾何性質(zhì)求其標(biāo)準(zhǔn)方程【典例1】(2023秋·新疆烏魯木齊·高二烏魯木齊市第十九中學(xué)??计谀┻^(guò)點(diǎn)SKIPIF1<0且與橢圓SKIPIF1<0有相同焦點(diǎn)的橢圓方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023春·四川瀘州·高二四川省瀘縣第四中學(xué)??计谀┮阎獧E圓的對(duì)稱軸是坐標(biāo)軸,離心率為SKIPIF1<0,長(zhǎng)軸長(zhǎng)為12,則橢圓方程為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0【典例3】(2023秋·廣東江門·高二臺(tái)山市華僑中學(xué)??计谥校┮阎獧E圓焦點(diǎn)在SKIPIF1<0軸,它與橢圓SKIPIF1<0有相同離心率且經(jīng)過(guò)點(diǎn)SKIPIF1<0,則橢圓標(biāo)準(zhǔn)方程為.【變式1】(2022秋·高二課時(shí)練習(xí))過(guò)點(diǎn)SKIPIF1<0且與橢圓SKIPIF1<0有相同焦點(diǎn)的橢圓的標(biāo)準(zhǔn)方程是(

).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023·陜西西安·長(zhǎng)安一中??级#懊扇?qǐng)A”涉及幾何學(xué)中的一個(gè)著名定理,該定理的內(nèi)容為:橢圓上兩條互相輸出垂直的切線的交點(diǎn)必在一個(gè)與橢圓同心的圓上,該圓稱為橢圓的蒙日?qǐng)A.若橢圓C:SKIPIF1<0的離心率為SKIPIF1<0,則橢圓C的蒙日?qǐng)A的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式3】(2023秋·江蘇泰州·高三統(tǒng)考期末)若橢圓SKIPIF1<0的焦點(diǎn)在SKIPIF1<0軸上,且與橢圓SKIPIF1<0:SKIPIF1<0的離心率相同,則橢圓SKIPIF1<0的一個(gè)標(biāo)準(zhǔn)方程為.題型03求橢圓的離心率的值【典例1】(2023春·江西宜春·高二江西省宜豐中學(xué)??计谀┯图垈闶侵袊?guó)傳統(tǒng)工藝品,至今已有1000多年的歷史.為宣傳和推廣這一傳統(tǒng)工藝,某活動(dòng)中將一把油紙傘撐開(kāi)后擺放在戶外展覽場(chǎng)地上,如圖所示.該傘的傘面是一個(gè)半徑為SKIPIF1<0的圓形平面,圓心到傘柄底端距離為2,當(dāng)光線與地面夾角為SKIPIF1<0時(shí),傘面在地面形成了一個(gè)橢圓形影子,且傘柄底端正好位于該橢圓的長(zhǎng)軸上,該橢圓的離心率SKIPIF1<0(

A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023·河南新鄉(xiāng)·新鄉(xiāng)市第一中學(xué)??寄M預(yù)測(cè))已知橢圓SKIPIF1<0的左頂點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0是橢圓SKIPIF1<0上關(guān)于SKIPIF1<0軸對(duì)稱的兩點(diǎn).若直線SKIPIF1<0的斜率之積為SKIPIF1<0,則SKIPIF1<0的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例3】(2023·遼寧遼陽(yáng)·統(tǒng)考二模)已知橢圓SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,過(guò)坐標(biāo)原點(diǎn)SKIPIF1<0的直線SKIPIF1<0與橢圓SKIPIF1<0交于SKIPIF1<0兩點(diǎn),點(diǎn)SKIPIF1<0位于第一象限,直線SKIPIF1<0與橢圓SKIPIF1<0另交于點(diǎn)SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則橢圓SKIPIF1<0的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例4】(2023春·浙江溫州·高二校聯(lián)考期末)已知橢圓SKIPIF1<0的左頂點(diǎn)為SKIPIF1<0,上頂點(diǎn)為SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點(diǎn),橢圓上的兩點(diǎn)SKIPIF1<0,SKIPIF1<0分別在第一,第二象限內(nèi),若SKIPIF1<0與SKIPIF1<0的面積相等,且SKIPIF1<0,則橢圓SKIPIF1<0的離心率為.【變式1】(2023春·廣東深圳·高二統(tǒng)考期末)已知橢圓SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,過(guò)原點(diǎn)的直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023·海南??凇ずD先A僑中學(xué)??寄M預(yù)測(cè))已知SKIPIF1<0,SKIPIF1<0分別是橢圓SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)的左,右焦點(diǎn),SKIPIF1<0是SKIPIF1<0上的一點(diǎn),若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式3】(2023春·貴州遵義·高二統(tǒng)考期中)已知SKIPIF1<0是橢圓SKIPIF1<0的右焦點(diǎn),直線SKIPIF1<0與橢圓交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),若SKIPIF1<0,則該橢圓的離心率是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式4】(2023·陜西咸陽(yáng)·武功縣普集高級(jí)中學(xué)校考模擬預(yù)測(cè))已知SKIPIF1<0是橢圓SKIPIF1<0:SKIPIF1<0的右焦點(diǎn),過(guò)SKIPIF1<0作直線SKIPIF1<0的垂線,垂足為SKIPIF1<0,SKIPIF1<0,則該橢圓的離心率為.題型04求橢圓的離心率的最值或范圍【典例1】(2023春·湖南益陽(yáng)·高二統(tǒng)考期末)若橢圓上存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0到橢圓兩個(gè)焦點(diǎn)的距離之比為SKIPIF1<0,則稱該橢圓為“倍徑橢圓”.則“倍徑橢圓”的離心率SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023春·上海青浦·高二統(tǒng)考期末)點(diǎn)SKIPIF1<0為橢圓SKIPIF1<0的右頂點(diǎn),SKIPIF1<0為橢圓SKIPIF1<0上一點(diǎn)(不與SKIPIF1<0重合),若SKIPIF1<0(SKIPIF1<0是坐標(biāo)原點(diǎn)),則橢圓SKIPIF1<0的離心率的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例3】(2023·陜西西安·統(tǒng)考一模)已知橢圓SKIPIF1<0上一點(diǎn)SKIPIF1<0,它關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0為橢圓右焦點(diǎn),且滿足SKIPIF1<0,設(shè)SKIPIF1<0,且SKIPIF1<0,則該橢圓的離心率的取值范圍是.【典例4】(2023·甘肅定西·統(tǒng)考模擬預(yù)測(cè))過(guò)原點(diǎn)作一條傾斜角為SKIPIF1<0的直線與橢圓SKIPIF1<0交于A,B兩點(diǎn),F(xiàn)為橢圓的左焦點(diǎn),若SKIPIF1<0,則該橢圓的離心率e的取值范圍為.【變式1】(2023·全國(guó)·高三專題練習(xí))已知c是橢圓SKIPIF1<0)的半焦距,則SKIPIF1<0取最大值時(shí)橢圓的離心率是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023·重慶萬(wàn)州·重慶市萬(wàn)州第三中學(xué)??寄M預(yù)測(cè))已知點(diǎn)SKIPIF1<0,SKIPIF1<0為橢圓SKIPIF1<0上的兩點(diǎn),點(diǎn)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的離心率SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式3】(2023秋·浙江嘉興·高二統(tǒng)考期末)已知點(diǎn)SKIPIF1<0是橢圓SKIPIF1<0:SKIPIF1<0的右焦點(diǎn),點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)SKIPIF1<0在SKIPIF1<0上,其中SKIPIF1<0,則SKIPIF1<0的離心率的取值范圍為.【變式4】(2023·重慶沙坪壩·重慶南開(kāi)中學(xué)校考模擬預(yù)測(cè))已知SKIPIF1<0為圓SKIPIF1<0上一點(diǎn),橢圓SKIPIF1<0焦距為6,點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)在橢圓SKIPIF1<0上,則橢圓離心率的取值范圍為.題型05根據(jù)橢圓離心率求參數(shù)【典例1】(2023秋·高二單元測(cè)試)設(shè)橢圓SKIPIF1<0的離心率分別為SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023春·江蘇鎮(zhèn)江·高二江蘇省揚(yáng)中高級(jí)中學(xué)校考階段練習(xí))橢圓SKIPIF1<0(SKIPIF1<0)的左、右焦點(diǎn)分別是SKIPIF1<0,SKIPIF1<0,斜率為1的直線l過(guò)左焦點(diǎn)SKIPIF1<0,交C于A,B兩點(diǎn),且SKIPIF1<0的內(nèi)切圓的面積是SKIPIF1<0,若橢圓C的離心率的取值范圍為SKIPIF1<0,則線段AB的長(zhǎng)度的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例3】(2023·全國(guó)·高二專題練習(xí))橢圓SKIPIF1<0的左、右焦點(diǎn)分別是SKIPIF1<0,斜率為SKIPIF1<0的直線SKIPIF1<0過(guò)左焦點(diǎn)SKIPIF1<0且交SKIPIF1<0于SKIPIF1<0兩點(diǎn),且SKIPIF1<0的內(nèi)切圓的周長(zhǎng)是SKIPIF1<0,若橢圓的離心率為SKIPIF1<0,則線段SKIPIF1<0的長(zhǎng)度的取值范圍是【變式1】(2023秋·重慶沙坪壩·高二重慶市第七中學(xué)校??计谀┮阎獧E圓SKIPIF1<0的離心率SKIPIF1<0,則SKIPIF1<0的值可能是(

)A.3 B.7 C.3或SKIPIF1<0 D.7或SKIPIF1<0【變式2】(2023春·上海松江·高三上海市松江二中校考階段練習(xí))設(shè)SKIPIF1<0,橢圓SKIPIF1<0的離心率為SKIPIF1<0,雙曲線SKIPIF1<0的離心率為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的取值范圍是.【變式3】(2023·吉林長(zhǎng)春·校聯(lián)考一模)已知橢圓C:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,點(diǎn)SKIPIF1<0、SKIPIF1<0在橢圓C上,滿足SKIPIF1<0,SKIPIF1<0,若橢圓C的離心率SKIPIF1<0,則實(shí)數(shù)λ取值范圍為.題型06直線與橢圓的位置關(guān)系【典例1】(2023·全國(guó)·高三對(duì)口高考)若直線SKIPIF1<0與橢圓SKIPIF1<0有且只有一公共點(diǎn),那么SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023春·上海浦東新·高二統(tǒng)考期中)已知橢圓SKIPIF1<0,直線SKIPIF1<0,則直線l與橢圓C的位置關(guān)系為(

)A.相交 B.相切 C.相離 D.不確定【變式1】(2023·廣東廣州·統(tǒng)考模擬預(yù)測(cè))已知以SKIPIF1<0為焦點(diǎn)的橢圓與直線SKIPIF1<0有且僅有一個(gè)公共點(diǎn),則橢圓的長(zhǎng)軸長(zhǎng)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023·全國(guó)·高三專題練習(xí))已知直線SKIPIF1<0與橢圓SKIPIF1<0恒有公共點(diǎn),則實(shí)數(shù)m的取值范圍(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0題型07直線與橢圓相切【典例1】(2023·全國(guó)·高三專題練習(xí))已知過(guò)圓錐曲線SKIPIF1<0上一點(diǎn)SKIPIF1<0的切線方程為SKIPIF1<0.過(guò)橢圓SKIPIF1<0上的點(diǎn)SKIPIF1<0作橢圓的切線SKIPIF1<0,則過(guò)SKIPIF1<0點(diǎn)且與直線SKIPIF1<0垂直的直線方程為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023春·河南周口·高二校聯(lián)考階段練習(xí))已知橢圓SKIPIF1<0的右頂點(diǎn)為A,上頂點(diǎn)為B,則橢圓上的一動(dòng)點(diǎn)M到直線AB距離的最大值為.【變式1】(2023·全國(guó)·高二專題練習(xí))橢圓SKIPIF1<0上的點(diǎn)P到直線x+2y-9=0的最短距離為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023·廣西·統(tǒng)考一模)在平面直角坐標(biāo)系中,動(dòng)點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上運(yùn)動(dòng),則點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離的最大值為.題型08弦長(zhǎng)【典例1】(2023·全國(guó)·高三對(duì)口高考)已知橢圓SKIPIF1<0,過(guò)左焦點(diǎn)SKIPIF1<0作傾斜角為SKIPIF1<0的直線交橢圓于SKIPIF1<0、SKIPIF1<0兩點(diǎn),則弦SKIPIF1<0的長(zhǎng)為.【典例2】(2023·全國(guó)·高三專題練習(xí))已知橢圓SKIPIF1<0,設(shè)直線SKIPIF1<0被橢圓C截得的弦長(zhǎng)為SKIPIF1<0,求k的值.【典例3】(2023秋·山東濱州·高二統(tǒng)考期末)已知橢圓C的兩個(gè)焦點(diǎn)分別是SKIPIF1<0,SKIPIF1<0,并且經(jīng)過(guò)點(diǎn)SKIPIF1<0.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若直線SKIPIF1<0與橢圓C相交于A,B兩點(diǎn),當(dāng)線段AB的長(zhǎng)度最大時(shí),求直線l的方程.【變式1】(2023·全國(guó)·高三專題練習(xí))已知橢圓SKIPIF1<0,過(guò)左焦點(diǎn)SKIPIF1<0的斜率為1的直線與橢圓分別交于A,B兩點(diǎn),求SKIPIF1<0.【變式2】(2023秋·青海西寧·高二期末)已知點(diǎn)SKIPIF1<0,橢圓SKIPIF1<0的離心率為SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0的右焦點(diǎn),直線SKIPIF1<0的斜率為SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點(diǎn).(1)求橢圓E的方程:(2)設(shè)過(guò)橢圓SKIPIF1<0的左焦點(diǎn)且斜率為SKIPIF1<0的直線SKIPIF1<0與橢圓SKIPIF1<0交于不同的兩SKIPIF1<0、SKIPIF1<0,求SKIPIF1<0的長(zhǎng).【變式3】(2023·江蘇南通·統(tǒng)考模擬預(yù)測(cè))已知橢圓SKIPIF1<0的左、右頂點(diǎn)是雙曲線SKIPIF1<0的頂點(diǎn),SKIPIF1<0的焦點(diǎn)到SKIPIF1<0的漸近線的距離為SKIPIF1<0.直線SKIPIF1<0與SKIPIF1<0相交于A,B兩點(diǎn),SKIPIF1<0.(1)求證:SKIPIF1<0(2)若直線l與SKIPIF1<0相交于P,Q兩點(diǎn),求SKIPIF1<0的取值范圍.題型09中點(diǎn)弦和點(diǎn)差法【典例1】(2023·全國(guó)·高三專題練習(xí))已知橢圓C:SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0的直線l與橢圓C交于A,B兩點(diǎn),若點(diǎn)P恰為弦AB的中點(diǎn),則直線l的斜率是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023·全國(guó)·高三對(duì)口高考)直線SKIPIF1<0截橢圓SKIPIF1<0所得弦的中點(diǎn)M與橢圓中心連線SKIPIF1<0的斜率為.【典例3】(2023春·新疆塔城·高二統(tǒng)考開(kāi)學(xué)考試)已知過(guò)點(diǎn)SKIPIF1<0的直線,與橢圓SKIPIF1<0相交于A,B兩點(diǎn),且線段AB以點(diǎn)M為中點(diǎn),則直線AB的方程是.【典例4】(2023·全國(guó)·高三對(duì)口高考)中心在原點(diǎn),一個(gè)焦點(diǎn)為SKIPIF1<0的橢圓被直線SKIPIF1<0截得弦的中點(diǎn)的橫坐標(biāo)為SKIPIF1<0,則橢圓的方程為.【變式1】(2023春·湖北荊州·高二沙市中學(xué)校考階段練習(xí))若橢圓SKIPIF1<0的弦AB被點(diǎn)SKIPIF1<0平分,則AB所在直線的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023·四川巴中·南江中學(xué)校考模擬預(yù)測(cè))已知橢圓SKIPIF1<0四個(gè)頂點(diǎn)構(gòu)成的四邊形的面積為SKIPIF1<0,直線SKIPIF1<0與橢圓C交于A,B兩點(diǎn),且線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0,則橢圓C的方程是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式3】(2023·全國(guó)·高三專題練習(xí))直線l與橢圓SKIPIF1<0交于A,B兩點(diǎn),已知直線SKIPIF1<0的斜率為1,則弦AB中點(diǎn)的軌跡方程是.【變式4】(2023春·福建廈門·高二廈門一中校考階段練習(xí))直線SKIPIF1<0不與SKIPIF1<0軸重合,經(jīng)過(guò)點(diǎn)SKIPIF1<0,橢圓SKIPIF1<0上存在兩點(diǎn)SKIPIF1<0、SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱,SKIPIF1<0中點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0.若SKIPIF1<0,則橢圓SKIPIF1<0的離心率為.題型10橢圓中三角形面積問(wèn)題【典例1】(2023秋·高二課時(shí)練習(xí))已知經(jīng)過(guò)橢圓SKIPIF1<0的右焦點(diǎn)SKIPIF1<0的直線SKIPIF1<0的傾斜角為SKIPIF1<0,交橢圓于A、B兩點(diǎn),SKIPIF1<0是橢圓的左焦點(diǎn),求SKIPIF1<0的周長(zhǎng)和面積.【典例2】(2023春·北京·高二北京師大附中校考期中)已知橢圓SKIPIF1<0SKIPIF1<0的離心率為SKIPIF1<0,其左焦點(diǎn)為SKIPIF1<0.直線SKIPIF1<0交橢圓SKIPIF1<0于不同的兩點(diǎn)SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)求SKIPIF1<0的面積.【典例3】(2023春·四川·高二統(tǒng)考期末)已知點(diǎn)SKIPIF1<0是圓SKIPIF1<0上的任意一點(diǎn),點(diǎn)SKIPIF1<0,線段SKIPIF1<0的垂直平分線交SKIPIF1<0于點(diǎn)SKIPIF1<0.(1)求動(dòng)點(diǎn)SKIPIF1<0的軌跡SKIPIF1<0的方程;(2)若過(guò)點(diǎn)SKIPIF1<0的直線交軌跡SKIPIF1<0于SKIPIF1<0、SKIPIF1<0兩點(diǎn),SKIPIF1<0是SKIPIF1<0的中點(diǎn),點(diǎn)SKIPIF1<0是坐標(biāo)原點(diǎn),記SKIPIF1<0與SKIPIF1<0的面積之和為SKIPIF1<0,求SKIPIF1<0的最大值.【變式1】(2023春·湖南衡陽(yáng)·高二校聯(lián)考期末)已知SKIPIF1<0是橢圓SKIPIF1<0的左頂點(diǎn),過(guò)點(diǎn)SKIPIF1<0的直線SKIPIF1<0與橢圓SKIPIF1<0交于SKIPIF1<0兩點(diǎn)(異于點(diǎn)SKIPIF1<0),當(dāng)直線SKIPIF1<0的斜率不存在時(shí),SKIPIF1<0.(1)求橢圓C的方程;(2)求SKIPIF1<0面積的取值范圍.【變式2】(2023春·江西九江·高二江西省湖口中學(xué)??计谥校┮阎獧E圓SKIPIF1<0SKIPIF1<0的離心率為SKIPIF1<0,且橢圓上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為SKIPIF1<0.直線SKIPIF1<0交橢圓SKIPIF1<0于不同的兩點(diǎn)SKIPIF1<0,(1)求橢圓SKIPIF1<0的方程;(2)橢圓左焦點(diǎn)為SKIPIF1<0,求SKIPIF1<0的面積.【變式3】(2023春·河南洛陽(yáng)·高二統(tǒng)考期末)已知圓SKIPIF1<0,點(diǎn)SKIPIF1<0是圓SKIPIF1<0上的動(dòng)點(diǎn),SKIPIF1<0是拋物線SKIPIF1<0的焦點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),過(guò)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,記點(diǎn)SKIPIF1<0的軌跡為曲線SKIPIF1<0.(1)求曲線SKIPIF1<0的方程;(2)過(guò)SKIPIF1<0的直線SKIPIF1<0交曲線SKIPIF1<0于點(diǎn)SKIPIF1<0、SKIPIF1<0,若SKIPIF1<0的面積為SKIPIF1<0(SKIPIF1<0為坐標(biāo)原點(diǎn)),求直線SKIPIF1<0的方程.題型11橢圓的定點(diǎn)、定值、定直線問(wèn)題【典例1】(2023春·廣東韶關(guān)·高二??茧A段練習(xí))已知橢圓SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,A、B分別是橢圓SKIPIF1<0的左、右頂點(diǎn),SKIPIF1<0為橢圓SKIPIF1<0的上頂點(diǎn),SKIPIF1<0的面積為SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)設(shè)直線SKIPIF1<0與橢圓SKIPIF1<0交于不同的兩點(diǎn)SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0,若直線SKIPIF1<0的斜率與直線SKIPIF1<0的斜率互為相反數(shù),求證:直線SKIPIF1<0過(guò)定點(diǎn).【典例2】(2023春·河南平頂山·高二統(tǒng)考期末)已知橢圓SKIPIF1<0經(jīng)過(guò)點(diǎn)SKIPIF1<0,且離心率為SKIPIF1<0.(1)求橢圓E的方程;(2)若經(jīng)過(guò)點(diǎn)SKIPIF1<0,且斜率為k的直線與橢圓E交于不同的兩點(diǎn)P,Q(均異于點(diǎn)A),證明:直線AP與AQ的斜率之和為定值.【典例3】(2023·河南洛陽(yáng)·模擬預(yù)測(cè))已知橢圓SKIPIF1<0:SKIPIF1<0的離心率為SKIPIF1<0,右焦點(diǎn)為SKIPIF1<0,A,B分別為橢圓SKIPIF1<0的左、右頂點(diǎn).(1)求橢圓SKIPIF1<0的方程;(2)過(guò)點(diǎn)SKIPIF1<0作斜率不為0的直線SKIPIF1<0,直線SKIPIF1<0與橢圓SKIPIF1<0交于P,Q兩點(diǎn),直線AP與直線BQ交于點(diǎn)M,記AP的斜率為SKIPIF1<0,BQ的斜率為SKIPIF1<0.求證:①SKIPIF1<0為定值;②點(diǎn)M在定直線上.【變式1】(2023·四川成都·校考一模)已知SKIPIF1<0分別為橢圓SKIPIF1<0的左,右頂點(diǎn),SKIPIF1<0為其右焦點(diǎn),SKIPIF1<0,且點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上.(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)若過(guò)SKIPIF1<0的直線SKIPIF1<0與橢圓SKIPIF1<0交于SKIPIF1<0兩點(diǎn),且SKIPIF1<0與以SKIPIF1<0為直徑的圓交于SKIPIF1<0兩點(diǎn),證明:SKIPIF1<0為定值.【變式2】(2023秋·江西萍鄉(xiāng)·高三統(tǒng)考期末)已知橢圓E的中心在原點(diǎn),周長(zhǎng)為8的SKIPIF1<0的頂點(diǎn),SKIPIF1<0為橢圓E的左焦點(diǎn),頂點(diǎn)B,C在E上,且邊BC過(guò)E的右焦點(diǎn).(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)橢圓E的上、下頂點(diǎn)分別為M,N,點(diǎn)SKIPIF1<0若直線PM,PN與橢圓E的另一個(gè)交點(diǎn)分別為點(diǎn)S,T,證明:直線ST過(guò)定點(diǎn),并求該定點(diǎn)坐標(biāo).【變式3】(2023·北京海淀·中央民族大學(xué)附屬中學(xué)校考模擬預(yù)測(cè))已知曲線SKIPIF1<0.(1)若曲線C是橢圓,求m的取值范圍.(2)設(shè)SKIPIF1<0,曲線C與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線SKIPIF1<0與曲線C交于不同的兩點(diǎn)M,N.設(shè)直線AN與直線BM相交于點(diǎn)G.試問(wèn)點(diǎn)G是否在定直線上?若是,求出該直線方程;若不是,說(shuō)明理由.題型12橢圓中的向量問(wèn)題【典例1】(2023春·河南周口·高二??奸_(kāi)學(xué)考試)已知橢圓SKIPIF1<0的右焦點(diǎn)SKIPIF1<0,長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的比值為2.(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)設(shè)SKIPIF1<0為橢圓SKIPIF1<0的上頂點(diǎn),直線SKIPIF1<0與橢圓SKIPIF1<0相交于不同的兩點(diǎn)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,求直線SKIPIF1<0的方程.【典例2】(2023春·江蘇南京·高二校考階段練習(xí))在平面直角坐標(biāo)系SKIPIF1<0中,橢圓SKIPIF1<0:SKIPIF1<0的左頂點(diǎn)到右焦點(diǎn)的距離是3,離心率為SKIPIF1<0.(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)斜率為SKIPIF1<0的直線SKIPIF1<0經(jīng)過(guò)橢圓SKIPIF1<0的右焦點(diǎn),且與橢圓SKIPIF1<0相交于SKIPIF1<0,SKIPIF1<0兩點(diǎn).已知點(diǎn)SKIPIF1<0,求SKIPIF1<0的值.【變式1】(2023·全國(guó)·高三對(duì)口高考)若點(diǎn)O和點(diǎn)F分別是橢圓SKIPIF1<0的中心和左焦點(diǎn),點(diǎn)P為該橢圓上的任意一點(diǎn),則SKIPIF1<0的最大值為(

)A.6 B.5 C.4 D.2【變式2】(2023春·河南洛陽(yáng)·高二校聯(lián)考階段練習(xí))已知SKIPIF1<0、SKIPIF1<0是橢圓SKIPIF1<0的左、右焦點(diǎn),點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,且SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)已知SKIPIF1<0,SKIPIF1<0兩點(diǎn)的坐標(biāo)分別是SKIPIF1<0,SKIPIF1<0,若過(guò)點(diǎn)SKIPIF1<0的直線SKIPIF1<0與橢圓SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),且以SKIPIF1<0為直徑的圓過(guò)點(diǎn)SKIPIF1<0,求出直線SKIPIF1<0的所有方程.題型13新定義問(wèn)題1.(2023·全國(guó)·高二專題練習(xí))開(kāi)普勒第一定律也稱橢圓定律?軌道定律,其內(nèi)容如下:每一行星沿各自的橢圓軌道環(huán)繞太陽(yáng),而太陽(yáng)則處在橢圓的一個(gè)焦點(diǎn)上.將某行星SKIPIF1<0看作一個(gè)質(zhì)點(diǎn),SKIPIF1<0繞太陽(yáng)的運(yùn)動(dòng)軌跡近似成曲線SKIPIF1<0,行星SKIPIF1<0在運(yùn)動(dòng)過(guò)程中距離太陽(yáng)最近的距離稱為近日點(diǎn)距離,距離太陽(yáng)最遠(yuǎn)的距離稱為遠(yuǎn)日點(diǎn)距離.若行星SKIPIF1<0的近日點(diǎn)距離和遠(yuǎn)日點(diǎn)距離之和是18(距離單位:億千米),近日點(diǎn)距離和遠(yuǎn)日點(diǎn)距離之積是16,則SKIPIF1<0(

)A.39 B.52 C.86 D.972.(2023·廣東韶關(guān)·統(tǒng)考模擬預(yù)測(cè))韶州大橋是一座獨(dú)塔雙索面鋼砼混合梁斜拉橋,具有樁深,塔高、梁重、跨大的特點(diǎn),它打通了曲江區(qū)、湞江區(qū)、武江區(qū)交通道路的瓶頸,成為連接曲江區(qū)與芙蓉新城的重要交通橋梁,大橋承擔(dān)著實(shí)現(xiàn)韶關(guān)“三區(qū)融合”的重要使命,韶州大橋的橋塔外形近似橢圓,若橋塔所在平面截橋面為線段SKIPIF1<0,且SKIPIF1<0過(guò)橢圓的下焦點(diǎn),SKIPIF1<0米,橋塔最高點(diǎn)SKIPIF1<0距橋面SKIPIF1<0米,則此橢圓的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(多選)(2023·全國(guó)·高二專題練習(xí))青花瓷又稱白地青花瓷,常簡(jiǎn)稱青花,中華陶瓷燒制工藝的珍品,是中國(guó)瓷器的主流品種之一,屬釉下彩瓷.如圖為青花瓷大盤,盤子的邊緣有一定的寬度且與桌面水平,可以近似看成由大小兩個(gè)橢圓圍成.經(jīng)測(cè)量發(fā)現(xiàn)兩橢圓的長(zhǎng)軸長(zhǎng)之比與短軸長(zhǎng)之比相等.現(xiàn)不慎掉落一根質(zhì)地均勻的長(zhǎng)筷子在盤面上,恰巧與小橢圓相切,設(shè)切點(diǎn)為SKIPIF1<0,盤子的中心為SKIPIF1<0,筷子與大橢圓的兩交點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0的對(duì)稱點(diǎn)為SKIPIF1<0.給出下列四個(gè)命題其中正確的是(

)A.兩橢圓的焦距長(zhǎng)相等 B.兩橢圓的離心率相等C.SKIPIF1<0 D.SKIPIF1<0與小橢圓相切4.(多選)(2023春·湖南長(zhǎng)沙·高二長(zhǎng)沙市明德中學(xué)??计谥校┘铀古翣?蒙日(圖1)是18~19世紀(jì)法國(guó)著名的幾何學(xué)家,他在研究圓錐曲線時(shí)發(fā)現(xiàn):橢圓的任意兩條互相垂直的切線的交點(diǎn)都在同一個(gè)圓上,其圓心是橢圓的中心,這個(gè)圓被稱為“蒙日?qǐng)A”(圖2).已知長(zhǎng)方形R的四邊均與橢圓SKIPIF1<0相切,則下列說(shuō)法正確的是(

)A.橢圓C的離心率為SKIPIF1<0 B.橢圓C的蒙日?qǐng)A方程為SKIPIF1<0C.橢圓C的蒙日?qǐng)A方程為SKIPIF1<0 D.長(zhǎng)方形R的面積最大值為18A夯實(shí)基礎(chǔ)B能力提升C綜合素養(yǎng)A夯實(shí)基礎(chǔ)一、單選題1.(2023秋·高二課時(shí)練習(xí))橢圓SKIPIF1<0的焦點(diǎn)坐標(biāo)為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2023·安徽·校聯(lián)考模擬預(yù)測(cè))已知橢圓SKIPIF1<0的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,則SKIPIF1<0的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2023春·上海長(zhǎng)寧·高二上海市第三女子中學(xué)??计谥校E圓SKIPIF1<0和SKIPIF1<0(

)A.長(zhǎng)軸長(zhǎng)相等 B.短軸長(zhǎng)相等 C.焦距相等 D.頂點(diǎn)相同4.(2023·河南·校聯(lián)考模擬預(yù)測(cè))關(guān)于橢圓C:SKIPIF1<0,有下面四個(gè)命題:甲:長(zhǎng)軸長(zhǎng)為4;乙:短軸長(zhǎng)為2;丙:離心率為SKIPIF1<0;?。篠KIPIF1<0.如果只有一個(gè)假命題,則該命題是(

)A.甲 B.乙 C.丙 D.丁5.(2023春·河南·高三階段練習(xí))已知SKIPIF1<0分別為橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),且SKIPIF1<0的離心率為SKIPIF1<0為橢圓SKIPIF1<0上的一點(diǎn),則SKIPIF1<0的周長(zhǎng)為(

)A.6 B.9 C.12 D.156.(2023春·福建福州·高二校聯(lián)考期中)橢圓SKIPIF1<0中,點(diǎn)SKIPIF1<0為橢圓的右焦點(diǎn),點(diǎn)A為橢圓的左頂點(diǎn),點(diǎn)B為橢圓的短軸上的頂點(diǎn),若SKIPIF1<0,此橢圓稱為“黃金橢圓”,“黃金橢圓”的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2023秋·高二課時(shí)練習(xí))過(guò)橢圓SKIPIF1<0的中心作直線與橢圓交于A、B兩點(diǎn),SKIPIF1<0為橢圓的左焦點(diǎn),則SKIPIF1<0面積的最大值為(

)A.6 B.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論