新高考數(shù)學(xué)二輪復(fù)習(xí)講義第二十一講空間向量在立體幾何中的應(yīng)用(含解析)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)講義第二十一講空間向量在立體幾何中的應(yīng)用(含解析)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)講義第二十一講空間向量在立體幾何中的應(yīng)用(含解析)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)講義第二十一講空間向量在立體幾何中的應(yīng)用(含解析)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)講義第二十一講空間向量在立體幾何中的應(yīng)用(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩42頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第二十一講:空間向量在立體幾何中的應(yīng)用【考點(diǎn)梳理】1.法向量的求解=1\*GB3①法向量一定是非零向量;=2\*GB3②一個(gè)平面的所有法向量都互相平行;=3\*GB3③向量SKIPIF1<0是平面的法向量,向量SKIPIF1<0是與平面平行或在平面內(nèi),則有SKIPIF1<0.第一步:寫(xiě)出平面內(nèi)兩個(gè)不平行的向SKIPIF1<0;第二步:那么平面法向量SKIPIF1<0,滿(mǎn)足SKIPIF1<0.第三步:化解方程組令SKIPIF1<0其中一個(gè)為1,求其它兩個(gè)值.2.判定直線(xiàn)、平面間的位置關(guān)系=1\*GB3①直線(xiàn)與直線(xiàn)的位置關(guān)系:不重合的兩條直線(xiàn)SKIPIF1<0,SKIPIF1<0的方向向量分別為SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0∥SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0;若SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0.=2\*GB3②直線(xiàn)與平面的位置關(guān)系:直線(xiàn)SKIPIF1<0的方向向量為SKIPIF1<0,平面SKIPIF1<0的法向量為SKIPIF1<0,且SKIPIF1<0.若SKIPIF1<0∥SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0;若SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0.3.平面與平面的位置關(guān)系平面SKIPIF1<0的法向量為SKIPIF1<0,平面SKIPIF1<0的法向量為SKIPIF1<0.若SKIPIF1<0∥SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0;若SKIPIF1<0⊥SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0⊥SKIPIF1<0.4.空間角公式.(1)異面直線(xiàn)所成角公式:設(shè)SKIPIF1<0,SKIPIF1<0分別為異面直線(xiàn)SKIPIF1<0,SKIPIF1<0上的方向向量,SKIPIF1<0為異面直線(xiàn)所成角的大小,則SKIPIF1<0.(2)線(xiàn)面角公式:設(shè)SKIPIF1<0為平面SKIPIF1<0的斜線(xiàn),SKIPIF1<0為SKIPIF1<0的方向向量,SKIPIF1<0為平面SKIPIF1<0的法向量,SKIPIF1<0為SKIPIF1<0與SKIPIF1<0所成角的大小,則SKIPIF1<0.(3)二面角公式:設(shè)SKIPIF1<0,SKIPIF1<0分別為平面SKIPIF1<0,SKIPIF1<0的法向量,二面角的大小為SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0(需要根據(jù)具體情況判斷相等或互補(bǔ)),其中SKIPIF1<0.5.點(diǎn)到平面的距離SKIPIF1<0為平面SKIPIF1<0外一點(diǎn)(如圖),SKIPIF1<0為平面SKIPIF1<0的法向量,過(guò)SKIPIF1<0作平面SKIPIF1<0的斜線(xiàn)SKIPIF1<0及垂線(xiàn)SKIPIF1<0.SKIPIF1<0【典型題型講解】考點(diǎn)一:直線(xiàn)與平面所成的角【典例例題】例1.(2022·廣東茂名·一模)如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為平行四邊形,E為CD的中點(diǎn),SKIPIF1<0.(1)證明:SKIPIF1<0;(2)若三角形AED為等邊三角形,PA=AD=6,F(xiàn)為PB上一點(diǎn),且SKIPIF1<0,求直線(xiàn)EF與平面PAE所成角的正弦值.【解析】(1)由SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0SKIPIF1<0又SKIPIF1<0,E為CD的中點(diǎn)SKIPIF1<0又SKIPIF1<0SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.又SKIPIF1<0SKIPIF1<0SKIPIF1<0.(2)由(1)得,以點(diǎn)A為原點(diǎn),分別以AC、AD、AP為x、y、z軸建立空間坐標(biāo)系.因?yàn)槿切蜛ED為等邊三角形,PA=AD=6,SKIPIF1<0CD=12,AC=SKIPIF1<0SKIPIF1<0SKIPIF1<0.設(shè)平面PAE的一個(gè)法向量為由SKIPIF1<0得,SKIPIF1<0令SKIPIF1<0則SKIPIF1<0SKIPIF1<0設(shè)直線(xiàn)EF與平面PAE所成的角為SKIPIF1<0SKIPIF1<0【方法技巧與總結(jié)】設(shè)SKIPIF1<0為平面SKIPIF1<0的斜線(xiàn),SKIPIF1<0為SKIPIF1<0的方向向量,SKIPIF1<0為平面SKIPIF1<0的法向量,SKIPIF1<0為SKIPIF1<0與SKIPIF1<0所成角的大小,則SKIPIF1<0.【變式訓(xùn)練】1.(2022·廣東惠州·一模)如圖1所示,梯形ABCD中,AB=BC=CD=2,AD=4,E為AD的中點(diǎn),連結(jié)BE,AC交于F,將△ABE沿BE折疊,使得平面ABE⊥平面BCDE(如圖2).(1)求證:AF⊥CD;(2)求平面AFC與平面ADE的夾角的余弦值.【解析】(1)連接EC,則△ABE?△BCE?△CDE都是正三角形,四邊形ABCE是菱形,所以SKIPIF1<0,SKIPIF1<0,又因?yàn)槊鍿KIPIF1<0面BCDE,面SKIPIF1<0面SKIPIF1<0,SKIPIF1<0面ABE,所以SKIPIF1<0面BCDE,又因?yàn)镾KIPIF1<0面BCDE,所以SKIPIF1<0;(2)由(1)知FB?FC?FA兩兩垂直,建立如圖所示的空間直角坐標(biāo)系,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面ADE的法向量為SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,平面AFC的法向量為SKIPIF1<0,設(shè)平面AFC與平面ADE的夾角的大小為SKIPIF1<0,SKIPIF1<0,所以平面AFC與平面ADE的夾角的余弦值為SKIPIF1<0.2.(2022·廣東廣州·一模)如圖,在五面體ABCDE中,SKIPIF1<0平面ABC,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求證:平面SKIPIF1<0平面ACD;(2)若SKIPIF1<0,SKIPIF1<0,五面體ABCDE的體積為SKIPIF1<0,求直線(xiàn)CE與平面ABED所成角的正弦值.【解析】若SKIPIF1<0是SKIPIF1<0中點(diǎn),連接SKIPIF1<0,作SKIPIF1<0,由SKIPIF1<0知:SKIPIF1<0,因?yàn)镾KIPIF1<0面ABC,則SKIPIF1<0面ABC,又SKIPIF1<0面ABC,所以SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,綜上,SKIPIF1<0兩兩垂直,故可構(gòu)建如下圖示的空間直角坐標(biāo)系SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0是面SKIPIF1<0的一個(gè)法向量,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0是面SKIPIF1<0的一個(gè)法向量,則SKIPIF1<0,所以面SKIPIF1<0面SKIPIF1<0.(2)由SKIPIF1<0面ABC,SKIPIF1<0面ABED,則面ABEDSKIPIF1<0面ABC,故SKIPIF1<0到面ABED的距離,即為△SKIPIF1<0中SKIPIF1<0上的高,因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0上的高SKIPIF1<0.又SKIPIF1<0面ABC,則SKIPIF1<0SKIPIF1<0,而SKIPIF1<0,有SKIPIF1<0SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0為直角梯形,令SKIPIF1<0,則SKIPIF1<0,綜上,SKIPIF1<0,故SKIPIF1<0.由(1)知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0是面ABED的一個(gè)法向量,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,則SKIPIF1<0,所以直線(xiàn)CE與平面ABED所成角的正弦值為SKIPIF1<0.3.(2022·廣東汕頭·一模)如圖,D為圓錐的頂點(diǎn),O是圓錐底面的圓心,SKIPIF1<0為底面直徑,SKIPIF1<0,SKIPIF1<0是底面的內(nèi)接正三角形,且SKIPIF1<0,P是線(xiàn)段SKIPIF1<0上一點(diǎn).(1)是否存在點(diǎn)P,使得SKIPIF1<0平面SKIPIF1<0,若存在,求出SKIPIF1<0的值;若不存在,請(qǐng)說(shuō)明理由;(2)當(dāng)SKIPIF1<0為何值時(shí),直線(xiàn)SKIPIF1<0與面SKIPIF1<0所成的角的正弦值最大.【解析】(1)解:由題得SKIPIF1<0,所以SKIPIF1<0.所以△SKIPIF1<0是圓的內(nèi)接三角形,所以SKIPIF1<0,由題得SKIPIF1<0.假設(shè)SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.此時(shí)SKIPIF1<0所以SKIPIF1<0時(shí),SKIPIF1<0平面SKIPIF1<0.(2)解:如圖所示,建立以點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn)的空間直角坐標(biāo)系SKIPIF1<0.設(shè)SKIPIF1<0,所以SKIPIF1<0設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.設(shè)直線(xiàn)SKIPIF1<0與面SKIPIF1<0所成的角為SKIPIF1<0,由題得SKIPIF1<0SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0時(shí),直線(xiàn)SKIPIF1<0與面SKIPIF1<0所成的角的正弦值最大.考點(diǎn)二:二面角【典例例題】例1.(2021·廣東佛山·一模)某商品的包裝紙如圖1,其中菱形SKIPIF1<0的邊長(zhǎng)為3,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,將包裝紙各三角形沿菱形的邊進(jìn)行翻折后,點(diǎn)E,F(xiàn),M,N匯聚為一點(diǎn)P,恰好形成如圖2的四棱錐形的包裹.(1)證明SKIPIF1<0底面SKIPIF1<0;(2)設(shè)點(diǎn)T為BC上的點(diǎn),且二面角SKIPIF1<0的正弦值為SKIPIF1<0,試求PC與平面PAT所成角的正弦值.【解析】(1)由菱形SKIPIF1<0的邊長(zhǎng)為3,SKIPIF1<0,SKIPIF1<0可得:SKIPIF1<0,即有SKIPIF1<0同理SKIPIF1<0,即有SKIPIF1<0在翻折的過(guò)程中,垂直關(guān)系保持不變可得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.可得SKIPIF1<0底面SKIPIF1<0(2)解法一:如圖,以點(diǎn)A為原點(diǎn),AB為x軸,過(guò)點(diǎn)A作AB的垂線(xiàn)為y軸,AP為z軸建立空間直角坐標(biāo)系.由第(1)問(wèn)可得SKIPIF1<0底面SKIPIF1<0,可得:SKIPIF1<0,SKIPIF1<0.則SKIPIF1<0為二面角SKIPIF1<0的平面角,由題意可得:SKIPIF1<0考慮SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0.利用正弦定理SKIPIF1<0可得:SKIPIF1<0,可得點(diǎn)T的坐標(biāo)為SKIPIF1<0.點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0設(shè)面SKIPIF1<0的法向量為SKIPIF1<0,則有SKIPIF1<0,即:SKIPIF1<0.令SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0則有:SKIPIF1<0則PC與面PAT所成角的正弦值為SKIPIF1<0.解法二:由第(1)問(wèn)可知SKIPIF1<0底面SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.則SKIPIF1<0為二面角SKIPIF1<0的平面角,由題意可得:SKIPIF1<0考慮SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0.利用正弦定理SKIPIF1<0可得:SKIPIF1<0,即點(diǎn)T為BC上靠近點(diǎn)B的三等分點(diǎn)所以在SKIPIF1<0中,由余弦定理可得:SKIPIF1<0,設(shè)過(guò)點(diǎn)C作平面PAT的垂線(xiàn),垂足為Q,連接PQ,所以SKIPIF1<0為PC與面PAT所成角考慮三棱錐SKIPIF1<0,由于SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0所以PC與面PAT所成角的正弦值為SKIPIF1<0解法三:由SKIPIF1<0面SKIPIF1<0,可得:SKIPIF1<0,SKIPIF1<0.故SKIPIF1<0為二面角SKIPIF1<0的平面角,由題意可得:SKIPIF1<0因?yàn)镾KIPIF1<0為銳角,所以SKIPIF1<0故SKIPIF1<0過(guò)點(diǎn)C作CQ垂直于AT于Q,連接CQ、AC則SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0面SKIPIF1<0,∴SKIPIF1<0又因?yàn)镾KIPIF1<0,SKIPIF1<0,故SKIPIF1<0面PAT故SKIPIF1<0為SKIPIF1<0與面PAT所成的角,∴SKIPIF1<0即PC與面PAT所成角的正弦值為SKIPIF1<0【方法技巧與總結(jié)】設(shè)SKIPIF1<0是二面角SKIPIF1<0的兩個(gè)半平面的法向量,其方向一個(gè)指向二面角內(nèi)側(cè),另一個(gè)指向二面角的外側(cè),則二面角SKIPIF1<0的余弦值為SKIPIF1<0.【變式訓(xùn)練】1.(2022·廣東·一模)如圖,SKIPIF1<0為圓柱SKIPIF1<0的軸截面,SKIPIF1<0是圓柱上異于SKIPIF1<0,SKIPIF1<0的母線(xiàn).(1)證明:SKIPIF1<0平面DEF;(2)若SKIPIF1<0,當(dāng)三棱錐SKIPIF1<0的體積最大時(shí),求二面角SKIPIF1<0的余弦值.【解析】(1)證明:如右圖,連接AE,由題意知AB為SKIPIF1<0的直徑,所以SKIPIF1<0.因?yàn)锳D,EF是圓柱的母線(xiàn),所以SKIPIF1<0且SKIPIF1<0,所以四邊形AEFD是平行四邊形.所以SKIPIF1<0,所以SKIPIF1<0.因?yàn)镋F是圓柱的母線(xiàn),所以SKIPIF1<0平面ABE,又因?yàn)镾KIPIF1<0平面ABE,所以SKIPIF1<0.又因?yàn)镾KIPIF1<0,DF,SKIPIF1<0平面DEF,所以SKIPIF1<0平面DEF.(2)由(1)知BE是三棱錐SKIPIF1<0底面DEF上的高,由(1)知SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即底面三角形DEF是直角三角形.設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,即點(diǎn)E,F(xiàn)分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn)時(shí),三棱錐SKIPIF1<0的體積最大,下面求二面角SKIPIF1<0的余弦值:法一:由(1)得SKIPIF1<0平面DEF,因?yàn)镾KIPIF1<0平面DEF,所以SKIPIF1<0.又因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面BEF.因?yàn)镾KIPIF1<0平面BEF,所以SKIPIF1<0,所以SKIPIF1<0是二面角SKIPIF1<0的平面角,由(1)知SKIPIF1<0為直角三角形,則SKIPIF1<0.故SKIPIF1<0,所以二面角SKIPIF1<0的余弦值為SKIPIF1<0.法二:由(1)知EA,EB,EF兩兩相互垂直,如圖,以點(diǎn)E為原點(diǎn),EA,EB,EF所在直線(xiàn)為x,y,z軸建立空間直角坐標(biāo)系SKIPIF1<0,則SKIPIF1<0.由(1)知SKIPIF1<0平面DEF,故平面DEF的法向量可取為SKIPIF1<0.設(shè)平面BDF的法向量為SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,取SKIPIF1<0,得SKIPIF1<0.設(shè)二面角SKIPIF1<0的平面角為θ,則SKIPIF1<0,由圖可知θ為銳角,所以二面角SKIPIF1<0的余弦值為SKIPIF1<0.2.(2022·廣東湛江·一模)如圖,在三棱柱SKIPIF1<0中,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,四邊形SKIPIF1<0是菱形,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中點(diǎn).(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)求二面角SKIPIF1<0的余弦值.【解析】(1)證明:連接SKIPIF1<0,因?yàn)樗倪呅蜸KIPIF1<0是菱形,則SKIPIF1<0,因?yàn)镾KIPIF1<0,故SKIPIF1<0為等邊三角形,所以SKIPIF1<0.因?yàn)槠矫鍿KIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.(2)解:連接SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中點(diǎn),所以SKIPIF1<0.又因?yàn)槠矫鍿KIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,以點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0、SKIPIF1<0、SKIPIF1<0所在直線(xiàn)分別為SKIPIF1<0、SKIPIF1<0、SKIPIF1<0軸建立如下圖所示的空間直角坐標(biāo)系,則SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.設(shè)平面SKIPIF1<0的法向量是SKIPIF1<0,則SKIPIF1<0,取SKIPIF1<0,可得SKIPIF1<0.設(shè)平面SKIPIF1<0的法向量是SKIPIF1<0,則SKIPIF1<0,取SKIPIF1<0,可得SKIPIF1<0.所以SKIPIF1<0,由圖可知,二面角SKIPIF1<0為鈍角,因此,二面角SKIPIF1<0的余弦值是SKIPIF1<0.3.(2022·廣東深圳·一模)如圖,在四棱錐E-ABCD中,SKIPIF1<0,SKIPIF1<0,E在以AB為直徑的半圓上(不包括端點(diǎn)),平面SKIPIF1<0平面ABCD,M,N分別為DE,BC的中點(diǎn).(1)求證:SKIPIF1<0平面ABE;(2)當(dāng)四棱錐E-ABCD體積最大時(shí),求二面角N-AE-B的余弦值.【解析】(1)證明:如圖所示,取EC的中點(diǎn)的F,連接MF,NF,因?yàn)镸,F(xiàn)分別為ED和EC的中點(diǎn),所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,同理可得SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.(2)解:如圖所示,過(guò)E作SKIPIF1<0交AB于O,因?yàn)槠矫鍿KIPIF1<0平面ABCD,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面ABCD,故EO為四棱錐E-ABCD的高,要使四棱錐E-ABCD體積最大,則E為弧SKIPIF1<0的中點(diǎn),所以O(shè)與AB的中點(diǎn),取CD的中點(diǎn)G,連接OG,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0平面ABCD,所以SKIPIF1<0,SKIPIF1<0,所以EO,AB,OG兩兩垂直,以O(shè)為原點(diǎn),分別以AB為x軸,以O(shè)E為y軸,以O(shè)G為z軸建立空間直角坐標(biāo)系,設(shè)SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,則平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,則SKIPIF1<0,由圖可知二面角SKIPIF1<0的平面角為銳角,所以二成角SKIPIF1<0的余弦值為SKIPIF1<0.4.(2022·廣東廣東·一模)如圖,在四棱錐SKIPIF1<0中,PD⊥平面ABCD,四邊形ABCD是等腰梯形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,M,N分別是AB,AD的中點(diǎn).(1)證明:平面PMN⊥平面PAD;(2)若二面角SKIPIF1<0的大小為60°,求四棱錐SKIPIF1<0的體積.【解析】(1)連接DM,顯然SKIPIF1<0且SKIPIF1<0,∴四邊形BCDM為平行四邊形,故SKIPIF1<0且SKIPIF1<0,∴△SKIPIF1<0是正三角形,故SKIPIF1<0,又SKIPIF1<0平面ABCD,SKIPIF1<0平面ABCD,則SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0平面PAD,又SKIPIF1<0平面PMN,∴平面SKIPIF1<0平面PAD.(2)(方法一)連接BD,易知SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,又PD⊥平面ABCD,ADSKIPIF1<0平面ABCD,則PD⊥AD,故可建立如圖所示的空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,平面PAB的法向量為SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,而平面ABCD的法向量為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.(方法二)連接DM,由M為AB的中點(diǎn),所以SKIPIF1<0且SKIPIF1<0,所以BCDM為平行四邊形,故SKIPIF1<0,所以△SKIPIF1<0為等邊三角形,在AM上取中點(diǎn)H,連接DH,PH,所以SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0平面ABCD,AMSKIPIF1<0平面ABCD,所以SKIPIF1<0,易知:SKIPIF1<0為SKIPIF1<0的二面角,所以SKIPIF1<0,又在SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0.5.(2022·廣東韶關(guān)·一模)如圖,在四棱錐SKIPIF1<0中,底面SKIPIF1<0是直角梯形,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0是以SKIPIF1<0為斜邊的等腰直角三角形,SKIPIF1<0為SKIPIF1<0中點(diǎn),SKIPIF1<0.(1)求證:SKIPIF1<0;(2)點(diǎn)SKIPIF1<0為棱SKIPIF1<0上一點(diǎn),若SKIPIF1<0,求二面角SKIPIF1<0的余弦值.【解析】(1)取SKIPIF1<0中點(diǎn)SKIPIF1<0,連結(jié)SKIPIF1<0.SKIPIF1<0因?yàn)镾KIPIF1<0,則SKIPIF1<0,由余弦定理可得SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0的中點(diǎn),則SKIPIF1<0,故SKIPIF1<0.又SKIPIF1<0為等腰直角三角形,SKIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0.又SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0面SKIPIF1<0.(2)由(1)可知,SKIPIF1<0,所以,SKIPIF1<0為直角三角形,以SKIPIF1<0為原點(diǎn),SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別為SKIPIF1<0軸、SKIPIF1<0軸、SKIPIF1<0軸正方向建立空間直角坐標(biāo)系如圖所示,則SKIPIF1<0因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0則SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0不妨取SKIPIF1<0,則SKIPIF1<0,由題可知SKIPIF1<0為面SKIPIF1<0的一個(gè)法向量設(shè)二面角的平面角為SKIPIF1<0,由圖知SKIPIF1<0為銳角,所以SKIPIF1<0所以SKIPIF1<0.6.如圖,四棱錐SKIPIF1<0的底面ABCD是平行四邊形,且SKIPIF1<0底面ABCD,SKIPIF1<0,點(diǎn)E是線(xiàn)段BC(包括端點(diǎn))上的動(dòng)點(diǎn).(1)探究點(diǎn)E位于何處時(shí),平面SKIPIF1<0平面PED;(2)設(shè)二面角SKIPIF1<0的平面角的大小為SKIPIF1<0,直線(xiàn)AD與平面PED所成角為SKIPIF1<0,求證:SKIPIF1<0【解析】(1)過(guò)點(diǎn)A作直線(xiàn)SKIPIF1<0,交直線(xiàn)BC于點(diǎn)M,則SKIPIF1<0,SKIPIF1<0,以點(diǎn)A為原點(diǎn),直線(xiàn)AM?AD?AP分別為x軸?y軸?z軸建立空間直角坐標(biāo)系,則SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,設(shè)平面PEA的一個(gè)法向量為SKIPIF1<0,則SKIPIF1<0,取SKIPIF1<0,得SKIPIF1<0,設(shè)平面PED的一個(gè)法向量為SKIPIF1<0,則SKIPIF1<0,取SKIPIF1<0,得SKIPIF1<0,若平面SKIPIF1<0平面PED,則SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0.故點(diǎn)E是BC中點(diǎn)或與點(diǎn)C重合時(shí),平面SKIPIF1<0平面PED.(2)SKIPIF1<0平面ADE的一個(gè)法向量為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0均為銳角,SKIPIF1<0.考點(diǎn)三:點(diǎn)到平面距離【典例例題】例1.(2022·廣東中山·高三期末)已知圓錐SKIPIF1<0的底面半徑為2,母線(xiàn)長(zhǎng)為SKIPIF1<0,點(diǎn)C為圓錐底面圓周上的一點(diǎn),O為圓心,D是SKIPIF1<0的中點(diǎn),且SKIPIF1<0.(1)求三棱錐SKIPIF1<0的表面積;(2)求A到平面SKIPIF1<0的距離.【解析】解:(1)由已知SKIPIF1<0,則SKIPIF1<0面SKIPIF1<0,則SKIPIF1<0三棱錐SKIPIF1<0的表面積等于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,圓錐的高SKIPIF1<0則SKIPIF1<0,對(duì)于SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,故三棱錐SKIPIF1<0的表面積為SKIPIF1<0;(2)因?yàn)镈是SKIPIF1<0的中點(diǎn),則A到平面SKIPIF1<0的距離即為B到平面SKIPIF1<0的距離,過(guò)B作SKIPIF1<0垂足為SKIPIF1<0,因?yàn)镾KIPIF1<0面SKIPIF1<0,且SKIPIF1<0面SKIPIF1<0所以面SKIPIF1<0面SKIPIF1<0,又SKIPIF1<0,面SKIPIF1<0面SKIPIF1<0,則SKIPIF1<0面SKIPIF1<0,則線(xiàn)段SKIPIF1<0長(zhǎng)度即為B到平面SKIPIF1<0的距離,SKIPIF1<0,所以A到平面SKIPIF1<0的距離為SKIPIF1<0.例2.在正方體SKIPIF1<0中,E為SKIPIF1<0的中點(diǎn),過(guò)SKIPIF1<0的平面截此正方體,得如圖所示的多面體,F(xiàn)為棱SKIPIF1<0上的動(dòng)點(diǎn).(1)點(diǎn)H在棱BC上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0平面SKIPIF1<0,試確定動(dòng)點(diǎn)F在棱SKIPIF1<0上的位置,并說(shuō)明理由;(2)若SKIPIF1<0,求點(diǎn)D到平面AEF的最大距離.【解析】(1)設(shè)平面SKIPIF1<0與平面SKIPIF1<0的交線(xiàn)為SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0所以SKIPIF1<0.由正方體SKIPIF1<0知,平面SKIPIF1<0平面SKIPIF1<0,又因?yàn)槠矫鍿KIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0取SKIPIF1<0中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,易知SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0為SKIPIF1<0中點(diǎn),所以SKIPIF1<0為SKIPIF1<0中點(diǎn).(2)以點(diǎn)SKIPIF1<0為原點(diǎn),SKIPIF1<0分別為SKIPIF1<0軸,SKIPIF1<0軸,SKIPIF1<0軸的正方向,建立空間直角坐標(biāo)系,則有SKIPIF1<0,其中SKIPIF1<0SKIPIF1<0設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0則有SKIPIF1<0,不妨取SKIPIF1<0,則SKIPIF1<0所以SKIPIF1<0,當(dāng)SKIPIF1<0,即點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0重合時(shí),取等.所以點(diǎn)D到平面AEF的最大距離為SKIPIF1<0.【方法技巧與總結(jié)】如圖所示,平面SKIPIF1<0的法向量為SKIPIF1<0,點(diǎn)SKIPIF1<0是平面SKIPIF1<0內(nèi)一點(diǎn),點(diǎn)SKIPIF1<0是平面SKIPIF1<0外的任意一點(diǎn),則點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離SKIPIF1<0,就等于向量SKIPIF1<0在法向量SKIPIF1<0方向上的投影的絕對(duì)值,即SKIPIF1<0或SKIPIF1<0【變式訓(xùn)練】1.(2022·廣東梅州·二模)如圖①,在直角梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0?SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn),將四邊形SKIPIF1<0沿SKIPIF1<0折起,如圖②,連結(jié)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求證:SKIPIF1<0;(2)當(dāng)翻折至SKIPIF1<0時(shí),設(shè)SKIPIF1<0是SKIPIF1<0的中點(diǎn),SKIPIF1<0是線(xiàn)段SKIPIF1<0上的動(dòng)點(diǎn),求線(xiàn)段SKIPIF1<0長(zhǎng)的最小值.【解析】(1)證明:因?yàn)樗倪呅蜸KIPIF1<0是直角梯形,SKIPIF1<0,SKIPIF1<0分別是的SKIPIF1<0,SKIPIF1<0中點(diǎn),所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,又因SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0;(2)解:由(1)可知SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,以SKIPIF1<0為原點(diǎn),建立如圖的空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0最小值SKIPIF1<0,所以線(xiàn)段SKIPIF1<0長(zhǎng)的最小值為SKIPIF1<0.2.如圖,在三棱柱SKIPIF1<0中,SKIPIF1<0為等邊三角形,四邊形SKIPIF1<0是邊長(zhǎng)為2的正方形,SKIPIF1<0為SKIPIF1<0中點(diǎn),且SKIPIF1<0.(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)若點(diǎn)SKIPIF1<0在線(xiàn)段SKIPIF1<0上,且直線(xiàn)SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0,求點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.【解析】(1)證明:由題知SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,在正三角形SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0中點(diǎn),于是SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0(2)取SKIPIF1<0中點(diǎn)為SKIPIF1<0中點(diǎn)為SKIPIF1<0,則SKIPIF1<0,由(1)知SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,于是SKIPIF1<0兩兩垂直如圖,以SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0的方向?yàn)镾KIPIF1<0軸,SKIPIF1<0軸,SKIPIF1<0軸的正方向,建立空間直角坐標(biāo)系則SKIPIF1<0所以SKIPIF1<0設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0于是SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0由于直線(xiàn)SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0于是SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,由于SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論