




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Chapter1:Introduction,atomicstructureandbondingReferences《材料科學(xué)基礎(chǔ)》胡賡祥主編,上海交通大學(xué)出版社,(第二版)2006《MaterialsScienceandEngineering:AnIntroduction》editedbyWilliamD.Callister,Jr.,JohnWiley&Sons,Inc.《材料科學(xué)基礎(chǔ)》潘金生主編清華大學(xué)出版社《材料科學(xué)基礎(chǔ)》徐恒鈞主編北京工業(yè)大學(xué)出版社
《材料科學(xué)基礎(chǔ)》劉智恩主編西北工業(yè)大學(xué)出版社Outline:FundamentalconceptsinMaterialsScienceFoundationsThestatusofMaterialsScienceFoundationsWhystudyMaterialsScienceFoundationsContentsofMaterialsScienceFoundationsHowtolearnMaterialsScienceFoundationseffectively
1.1Fundamental
conceptsin
materialssciencefoundations
Materials
issynonymouswithsubstance,andisanythingmadeofmatter–hydrogen,airandwaterareallexamplesofmaterials.Materialsscience
isaninterdisciplinaryfieldinvolvingthepropertiesofmatteranditsapplicationstovariousareasofscienceandengineering.Materialssciencefoundations
isthebasictheoryofmaterialresearch,itinvestigatestherelationshipbetweenthestructureofmaterialsatatomicormolecularscalesandtheirmacroscopicproperties.
1.2Statusofmaterialsscience
Thedevelopmentandadvancementofsocietieshavebeen
intimatelytiedtothemembers’abilitytoproduceandmanipulatematerials.Thehumancivilizations
havebeen
designatedbytheleveloftheir
materialsdevelopment.StoneAge(2.5millionBC)BronzeAge(3000BC)IronAge(1000BC)CementAge(0BC)SteelAge(1800s)SiliconAge(1950s)NewMaterialsAge(1990s)1.3Whystudymaterialssciencefoundations
MaterialsScienceisaninterdisciplinaryfieldinvolvingphysics,chemistryandetc.Itinvestigatestherelationshipbetweenthestructureofmaterialsandtheirproperties.Therightsketchmapshowsusthefourelementsofthematerialsscienceandengineering.
1.Themeaningofmaterialsscience
Thestructureofmaterialsincludesdifferentcrystals,amphorousandmicrostructuresunderthemicroscope.Thepropertyofmaterialsincludesphysicalproperty,chemicalpropertyandmechanicalproperty.Theinternalstructureofmaterialsincludesfourlevels:(a)atomicstructure;(b)Bonding;(c)Atomicarrangement;(d)MicrostructureTherelationshipbetweenmaterialsanditsstructure
ThemaindifferencebetweenMaterialsScienceandMaterialsEngineeringisthattheirfocusisdifferent,However,thereisnoadefiniteborderlinebetweenthesetwosciences.Therefore,wealwaysputthemtogetherandcallitMaterialsScienceandEngineering(MRS).2.TherelationshipbetweenthematerialsscienceandmaterialsengineeringMaterialsSciencesTechniquePropertyStructureMaterialsEngineeringEquipmentTechniqueStructurePropertyComponentbehaviorMaterialsengineeringincludesthefollowingfiveparts:Materialssciencesincludesthefollowingthreeparts:ThefourelementsofMaterialsScienceandEngineeringStructure:includingmacrostructure,microstructure,atomicimageandelectronicstructure.Property:includingmechanicsproperty,physicalproperty,chemicalpropertyandmetallurgyprocessingproperty.Processing:includingthefabrication,processingandpost-treatmentofthematerials.Usagestatus:includingthestructuralstability,theenvironmentaleffectandthepropertychangesofthematerials.3.
Classificationofmaterial
Materialscanbeclassifiedintothestructuralmaterialsandfunctionalmaterialsaccordingtotheirstructureandusage.Thiscourseinvolvedthefollowingmaterialsincludingmetal,ceramic,macromolecularmaterialsandthecorrespondingcompounds.Metals:blackmetal(steel),colouredmetal(allmetals
excludingsteel)
Ceramics:oxideceramic,non-oxideceramics
Macromolecularmaterials:plastic,rubbersyntheticfiber
Compositematerials:metalcomposite,ceramiccomposite,
colophonycomposite.
Structuralmaterials:metal,ceramic,macromolecularMaterials
andthecorrespondingcomposites.Functionalmaterials:
electronicmaterials,photoelectricmaterials,superconductors,etc.metalCeramicCompositesMacromolecule4.MaterialsapplicationMaterialsandcomputer
(a)Removable
memorizerinpersonalcomputers(b)Computerdevelopment:electrontube→transistor→integratecircuit
TypeMaterialsStoragePropertyFloppydiskFerricoxide1.44MblowstoragecapacitydocumentfileformatCD-RWZnS650MbCD,lowprice,largeamountUsageMOTbFeCo650Mb,1.3GSpecialdrive,expensiveDVD-RWZnS4.7Gb(singlelayer)CD-RWandCD,largeamountUsageElectrontubeElectrodematerial:tungsten(W),molybdenum(Mo)AudionThispictureistakenfromNationalGeographicVol.162,No.4,1982IntegratecircuitMaterials:singlecrystalSi,highpurityTi,SiO2andCrthinfilmsSinglecrystalSistickSinglecrystalSiwaferIntegratecircuitsinglecrystalfurnaceMaterialsanddailyuseTitaniumBicycle
LifesciencematerialsBefore:Hgalloys(top)Newceramics(bottom)anti-acid,anti-suddencoldandantisuddenheatability,lowthermalconducutivity,comfortableetc.)
Compositematerials
Carbon,boronfiberandepoxycompoundfiberareallverylight,whichcanusedforenhancingthestrengthinsomespecialdirections.Aviationmaterials
Addingalloyingelementswillimprovethephysicalandmechanicalpropertiesoftheairplane’sbodymaterialssuchasstrength,endurance,usagelifetime.Supersteel
Properties:superhard,highstrength,beingabletousedfornewfabricationtechnique,anti-rustetc.1.4ContentsMaterialsmicrostructure
Atomsstructureandbonding,solidstatestructure,crystaldefects,atomicandmolecularmotionsinsolid,distortionandrecrystallization.Thelawofphasetransition
Phasetransitioninasingle-component,binaryandternarysystemsMaterialsform
Crystal,amphorousandmetastablematerialsMaterialsmetastablestateanditsphysicalproperties
Nanomaterials,Dielectricity,ferroelectricityandferromagnetismModernanalyticalmethodsinmaterials
X-raydiffraction(XRD),Transmissionelectronmicroscopy(TEM),Scanningelectronmicroscopy(SEM),Atomicforcemicroscopy(AFM)
Chapter2:Solidstructureandbasiccrystaltheory(FoundationofCrystallography)
IntroductionClassifiedaccordingthestateofthematerials:Gas,liquidandSolidClassifiedaccordingtothearrangementofatomormoleculeinmaterials:crystalandnon-crystal
Differencebetweenthecrystalandnon-crystal:
Atomicarrangements:
atomsincrystalsarespatiallyperiodicarrangedwhileatomsinnon-crystalarearrangedinanirregularwayMeltingpoint:
crystalshaveafixedmeltingpointwhilethenon-crystalshavenofixedmeltingpoint.Theliquid-solidtransitiontakeplaceinatemperaturerange.Anisotropy:Crystals:anisotropy;non-crystal:isotropy
Crystals:mostceramics,afewmacromolecularmaterials,metalsandalloys
Non-crystals:mostmacromolecularmaterials,glassandcomplexmaterials.2.1Foundationofcrystallography
1.SpacelatticeandunitcellLatticepoint:
Alatticepointisapointinacartesiancoordinatesystemsuchthatbothitsx-andy-coordinatesareintegers.Spacelattice:
A3-dimensionalgeometricarrangementoftheatoms.
Lattice:
Lattice
meansathree-dimensionalarrayofpointscoincidingwithatompositions.Unitcell:
theunitcell
isthebasicstructuralunitofthecrystalstructure.SketchmapofcrystallatticeSketchmapofunitcellUnitcellcharacterization
Characterizationofthesizeandshapeoftheunitcell:Thelengthofthecelledges
:a,bandc(latticeconstantsorparameters)Theanglesbetweenthecelledges:α、β、γ.Theprincipleofchoosingaunitcell:ItcanreflectthehighlysymmetryoftheoriginallatticeTheamountoftheequaledgesandanglesshouldbethelargestWhentheangleequals90degree,theamountoftherightangleshouldbethelargestIthastheminimumvolumeCharacterizationofunitcella,bandcα,βandγorusinglatticevectora,bandcruvW=ua+vb+wcV=a.(bxc)Simpleunitcell:
onlyonelatticepointateachcorneroftheparallelepipedComplexunitcell:
latticepointalsocanlocateatbodycenter,facecenterandbottomcenterbesidesthecornerSketchmapofthelattice
constantLatticetypeSevencrystal
systems,fourteenBravaislattice(seethetableonthenextslide)Thedifferenceofthecrystalstructureandspacelattice
Spacelattice:onlyhave14latticearrangement.
Crystalstructure:thearrangementoftheparticleisinfiniteSevencrystal
systemsandfourteenBravaislatticeCrystalsystemBravaislatticeCrystalsystemBravaislatticeTriclinica≠b≠c,α≠β≠γMonoclinica≠b≠c,α=γ=90o≠βOrthorhombica≠b≠c,α=β=γ=90oSimpletriclinicSimplemonoclinicBottom-centeredmonoclinicSimpleorthorhombicBottom-centeredorthorhombicBody-centeredorthorhombicFace-centeredorthorhombicHexagonala1=a2=a3≠c,α=β=90o,γ=120oRhombohedrala=b=c,α=β=γ≠90oTetragonala=b≠c,α=β=γ=90oCubica=b=c,α=β=γ=90oSimplehexagonalSimpleRhombobedralSimpletetragonalBody-centeredtetragonalSimplecubicBody-centeredcubicFace-centeredcubicSimpletriclinic
a≠b≠cα≠β≠γBottom-centeredmonoclinic
a≠b≠cα=γ=90°≠βSimplemonoclinic
a≠b≠cα=γ=90°≠βSimpleorthorhombica≠b≠c,α=β=γ=90°Bottom-centeredorthorhombica≠b≠c,α=β=γ=90°Body-centeredorthorhombica≠b≠c,α=β=γ=90°Face-centeredorthorhombica≠b≠c,α=β=γ=90°Simplehexagonal
a=b≠c,α=β=90°,γ=120°
Simplerhombobedrala=b=c,α=β=γ≠90°
Simpletetragonala=b≠c,α=β=γ=90°
Body-centeredtetragonal
a=b≠c,α=β=γ=90°Simplecubic
a=b=c,α=β=γ=90°Body-centeredcubica=b=c,α=β=γ=90°Face-centeredcubic
a=b=c,α=β=γ=90°2.IndicesofdirectionsandIndicesofcrystalplaneCrystalplane:
oneofasetofparallel,equallyspacedplanesinacrystalstructure.Crystaldirection:
thecrystallographicdirectionsarefictitiouslineslinkingnodes(atoms,ionsormolecules)ofacrystal).
Indicesofdirectionsandindicesofcrystalplane(Millerindices):
anotationsystemincrystallographyforplanesanddirectionsincrystallattice.
2.1Foundationofcrystallography
a)IndicesofdirectionsinthecubiccrystalsystemsStepsofdeterminingtheindicesofdirections[uvw]incubiccrystalsystems:BuildingcoordinateSolvingcoordinateConvertingintoanintegerListingsquarebrackets[uvw],addingaminussignatthetopoftheindicesifthecoordinatevalueisnegative.ThecoordinateofeachlatticepointincubiccrystalsystemThesketchmapofdeterminingcrystaldirection[uvw]inthecubiccrystalsystemCommoncrystaldirections[uvw]inthecubiccrystalsystemb).IndicesofcrystalplaneinthecubiccrystalsystemsStepsofdeterminingtheindicesofcrystalplane(hkl)incubiccrystalsystems:BuildingcoordinateSolvinginterceptTakingreciprocalConvertingintoaninteger:h,k,lListingroundbrackets(hkl),addingaminussignatthetopoftheindicesiftheinterceptvalueisnegative.
Thesketchmapofcrystalplane(hkl)inthecubiccrystalsystemTwocrystalplanes(hkl)inthecubic
crystalsystemh≠k≠
l≠0,thenthereare24crystalplanes
3!×4=24,forexample:{123}(2)h≠k≠0ork≠
l≠0orh≠
l≠0,thenthereare12crystalplanes
3!/2!=12,forexample:{112}(3)h=k=l,thenthereare4crystalplanes
3!/3!×4=4,forexample:{111}h=0ork=0orl=0,thenthereare12crystalplanes
(3!/2)×4=12,foeexample:{120}
h==k=0orh=l=0ork=l=0,thenthereare3crystalplanes
(3!/2!22)×4=3,forexample:{100}
Numbersthecrystalplanesinthefamilyofcrystalplanes{hkl}c).Indicesofcrystaldirectionandcrystalplanein
thehexagonalcrystalsystem
Thedeterminingstepissameasthatofthecubiccrystalsystem,butwealwayschoosefourcoordinatestodenotetheindicesofthecrystaldirectioninthehexagonalcrystalsystem:a1、a2、a3、c,wherea1、a2、a3locatethesamebottomfaceandtheanglebetweenthemis120o(thec-axisorientationisnormaltothebottomface).
Indicesofcrystalplan(hkil),wherei=-(h+k)
Indicesofcrystaldirection[uvtw],wheret=-(u+v)MillerindexinthehexagonalcrystalsystemThreeaxisfouraxisa1,a2,ca1,a2,a3,c120°
120°
120°
(hkil)i=-(h+k)[uvtw]t=-(u+v)Thesketchmapofcrystaldirection(plane)inthehexagonalcrystalsystem[hkil]inthehexagonalcrystalsystemd).ZoneZone:
azoneisdefinedasagroupofcrystalfacesthatintersectinparalleledges.
Zonelaw:
therelationshipbetween[uvw]and(hkl)
inthesamezoneis:hu+kv+lw=0
Wecangetthe[uvw]or(hkl)accordingtothezonelaw.
e).InterplanerspacingTheperpendiculardistancebetweensuccessiveparallelplanesofatomsinacrystal,itisdenotedwithd,h,k,l.CubicHexagonalRectangularcoordinates
Theaboveformulaisonlyforsimpleunitcell.Foracomplexsimple,weshouldconsidertheeffectoftheadditionalplanes.fcc:whenh,kandlarenotalloddoralleven
Hexagonalcrystalsystem:
Cubicrystalsystem:
Forexample{100},{110}
bcch+k+l=odd,
Forexample{100},{111}Whenh+2k=3n(n=0,1,2,3,……),I=oddForexample{0001}Theanglebetweenthenormalof(h1k1l1)planeand(h2k2l2)planeOrthorhombicCubicHexagonal3.Symmetryofthecrystal
Symmetry——thefundamentalpropertyofthecrystalSymmetryelementsPointgroup:32Spacegroup:230Micro-symmetryMacro-symmetrySymmetricaxis(n)1,2,3,4,6Symmetricplane(m)Symmetriccenter(i)Turn-inversionaxis1,2,3,4,6Slidingplane:a,b,c,n,dHelixaxis:21,31,32,41,
42,43,61,62,
63,64,652.1Foundationofcrystallography
Chapter2:Solidstructureandbasiccrystaltheory(Foundationofcrystallography)2.2Crystalstructureofthemetals
Metalsingeneralarecrystalatthesolidstate.Themetalliccrystalisbondedbymetallicbonding.Thecommoncrystalstructureofthemetals:
Face-centeredcubicsturctureA1orfccBody-centeredcubicstuctureA2orbccHexagonalclose—packedA3orhcp1.ThreetypicalmetalliccrystalstructuresHowtocharacterizetheunitcell:ThearrangementoftheatomsintheunitcellLatticeparametersThenumberoftheatomsintheunitcellTheradiusRoftheatomsCoordinativenumberanddensityClosed-packeddirectionandclosed-packedplaneIntersticeofthecrystalstructureThestackingmanneroftheatomsModelsofthethreetypicalmetalliccrystalstructuresThenumberofatomsintheunitcellofthreetypicalmetalliccrystalstructuresTheatomicradiusandlatticeparametersThestackingmannerofthepackedplanesofthetypicalmetalliclattice(a)hcpstructure(b)fccstructure(b)fcccrystalcell
a)Faced-centeredcubiclattice(properties)Thearrangementoftheatomsintheunitcell:thereisoneatomateachtopofthe8cornerandoneatomineachcenterofthe6faces.Latticeparameters:a=b=c;α=β=γ=90oThenumberofatomsintheunitcell:n=8×1/8+6×1/2=4
TheatomicradiusR:halfofthedistancebetweenthetwotouchedatoms.Coordinativenumberanddensity:
CoordinativenumberCN=12Densityk=0.74Thelocationoftheatomsintheface-centeredcubiclatticeThenumberoftheatomsintheface-centeredcubiclatticeThecoordinativenumberoftheatomsintheface-centeredcubiclatticeThepackedplanesoftheface-centeredcubiclatticeTwotypesofinterstice:
tetrahedralintersticeandoctahedralinterstice
Octahedralinterstice:rB=0.414R,whererBistheradiusoftheinterstice,Ristheradiusoftheatomandthenumberoftheintersticeis4.
Tetrahedralinterstice:rB=0.225R,thenumberoftheintersticeis8.Thestackingmanner:ABCABC…orACBACB…Metalswithfccstructure:γ-Fe,Al,Cu,Ni,AuandAgetc.a)Faced-centeredcubiclattice(intersticeandthestackingmanner)
Octahedralintersticeoftheface-centeredcubiclatticeOctahedralintersticeOctahedralintersticeofthefaced-centeredcubiclatticeTetrahedralintersticeoftheface-centeredcubiclatticeTetrahedralintersticeTetrahedralintersticeofthefaced-centeredcubiclatticeThestackingmanneroftheatomsintheface-centeredcubiclatticeb)Body-centeredcubiclattice
(properties)Thearrangementoftheatoms:thereisoneatomateachtopofthe8cornerandoneatominthecenterofbody.Latticeparameters:a=b=c,α=β=γ=90oThenumberofatomsintheunitcell:n=8×1/8+1=2Theradiusoftheatom:
Coordinativenumberanddensity:CoordinativenumberCN=8Densityk=0.68
Thelocationoftheatomsinthebody-centeredcubiclatticeThenumberoftheatomsinthebody-centeredcubiclatticeThepackedplanesofthebody-centeredcubiclatticeb)Body-centeredcubiclattice(intersticeandthestackingmanner)
Interstice:
Tetrahedralintersticeandoctahedralinterstice
Octahedralinterstice:
rB=0.154R(in<100>)orrB=0.633R(in<110>);Number=6
Tetrahedralinterstice:rB=0.291R;Number=6Stackingmanner:ABABAB…Metalswithbccstructure:α-Fe,δ-Fe,Cr,Mo,WandVetc.Intersticeofthebody-centeredcubiclatticeN=6N=12Octahedralinterstice
MetallicatomsOctahedralintersticeTetrahedralintersticeMetallicatomsTetrahedralintersticec)Hexagonalclose-packedlattice
(properties)
Thearrangementoftheatoms:thereisoneatomateachtopcornerofthehexagonalpilarandthreeatomsinthecenterofthehexagonalpilar.Latticeparameters:a1=a2≠a3,α=β=90o,γ=120oThenumberofatomsinthelattice:
n=12×1/6+2×1/2+3=6Theradiusoftheatom:2R=aR=a/2Coordinativenumberanddensity:CoordinativenumberCN=12Densityk=0.74
Thelocationoftheatomsinthehexagonalclose-packedlattice
Thenumberoftheatomsinthehexagonalclose-packedlattice
Thepackedplanesinthehexagonalclose-packedlattice
Thecoordinativenumberinthehexagonalclose-packedlattice
c)Hexagonalclose-packedlattice
(intersticeandthestackingmanner)
Interstice:complex
Octahedralinterstice:
rB=0.414R,N=6
Tetrahedralinterstice:rB=0.225R,N=12Stackingmanner:ABABAB…
Metalswithhcpstructure:Mg,Zn,BeandCdetc.Octahedralintersticeofthehexagonalclose-packedlattice
OctahedralintersticeMetallicatomsOctahedralintersticeTetrahedralintersticeofthehexagonalclose-packedlatticeTetrahedralintersticeMetallicatomsTetrahedralintersticeThestackingmanneroftheatomsinthehexagonalclose-packedlattice
2.Multi-crystalproperties
Multi-crystalpropertiesmeansthatsomemetalshavedifferentcrystalstructuresatdifferenttemperaturesandpressures.
Multi-crystaltransition(orallotropictransition)meansthattheinnerpartofthemetalwilltransferfromonestructuretoanotherstructurewhentheexternalconditionschanged(forexample,TandP).Forexample:3.AnisotropyofthecrystalAnisotropy:anisotropyisthepropertyofbeingdirectionallydependent.Crystalgrain:
particlesthatcomposedofthecrystal.Polycrystal:
polycrystallinematerialsaresolidsthatarecomposedofmanycrystallitesofvaryingsizeandorientation.
Crystalgrain
MultiphasealloysThemorphologyimageofalloysThefundamentalrequirementofthissectionNeedtomasterthefollowingconceptsandterms:IsotropyandanisotropyPropertiesofthreetypicalcrystalstructuresincludingtheshapeoftheunitcell,latticeparameters,thenumberoftheatomsintheunitcell,theradiusoftheatom,coordinativenumber,density,thesizeandnumberofdifferentintersticeaswellastheindicesoftheclose-packedplaneandtheclose-packeddirectionetc.
Polycrystalsandsinglecrystals,crystalgrainandgrainboundary.
Chapter2:Solidstructureandbasiccrystaltheory(Foundationofcrystallography)IntroductionAlloyanalloyisapartialorcompletesolidsolutionofoneormoreelementsinametallicmatrix.
Constituentelement:thefundamentalunitthatcomposedofthealloy.Itcanbemetals,nonmetalsandcompounds.Structurethemorphologyimageofthematerials.Itcanbeobservedbythenakedeye,themagnifier
ormicroscope.
Macro-structure:themorphologyimagethatcanbeobservedbythenakedeyeora30timesmagnifer.
Micro-structure:
themorphology
imagesunderthemicroscope.
PhaseUniformpartsinthealloyhavingthesamecondensedstate,samechemicalcomponent,samecrystalstructureandpropertiesaswellasbeingseparatedeachotherbytheinterface.2.3AlloyphasestructureSinglephasealloys:alloyscomposedwithonephaseMultiphasealloys:alloyscomposedwithseveraldifferentphasesThepropertiesofthealloyaredeterminedbythefollowingfactors:
(a)
Electrochemistry(electronegativityorchemicalappetency)
(b)thesizeoftheatom(c)theatomicvaluePhaseclassification:
solidsolutionandinterphase1.Solidsolution
Asolidsolutionisasolid-statesolutionofoneormoresolutesinasolvent.Suchamixtureisconsideredasolutionratherthanacompoundwhenthecrystalstructureofthesolventremainsunchangedbyadditionofthesolutes,andwhenthemixtureremainsinasinglehomogeneousphase.
Thedistinctpropertyofthesolidsolutioniskeepingthecrystalstructureofthesolvent.a).Classificationofthesolidsolution
Accordingtothelocationofthesoluteatomsinthelattice:
SubstitutionalsolidsolutionInterstitialsolidsolution
Accordingtothesolubilityofthesoluteatomsinthesolvent:
LimitedsolidsolutionUnlimittedsolidsolution
Accordingtodistributionofthesoluteatomsinthesolvent:
Non-orderedsolidsolutionOrderedsolidsolution
Accordingtothebodytype
:
Primarysolidsolution
SecondarysolidsolutionTwotypesofthesolidsolution
(substitutionorinterstice)Orderedsolidsolution-shortrangeOrderedsolidsolution-longrangeOrderedsolidsolution-segregation
b).SubstitutionsolidsolutionSubstitutionsolidsolutioningeneralisformedamongthemetalelements.Thesamecrystalstructureisthenecessaryconditionofformingtheunlimitedsolidsolution.Whenthesizeoftheatom△r<15%orr(solute)/r(solvent)>0.85,thesolubilityofthesolidsolutionwillbelargeunderotherconditionsisnearlysameandviceversa.
Forexample:
iron-basedalloys,unlimitedsolidsolution△r<8%。
copper-basedalloys,unlimitedsolidsolution△r<10%
Electronegativity
ElectronicdensityLarge-compoundSmall-solidsolutionLarge-interphaseSmall-solidsolutionThesketchmapofthesubstitutionsolidsolutionLatticeaberranceinducedbythelargeandsmallsoluteatomsinthesubstitutionsolidsolutionc).interstitialsolidsolution
Thesoluteatomsaresomenonmetalelementswiththeradiuslessthan0.1nm(C,N,O,H,B)
Formationcondition:△r>41%orr(solute)/r(solvent)><0.59interstitialsolidsolutioncanonlybelimittedsolidsolutionanditssolubilityissmall
Forexample:Catomsinα-Fe(max.Wt=0.0218%)
Catomsinγ-Fe(max.Wt=2.11%)Thesketchmapoftheinterstitialsolidsolution(1)Thesketchmapoftheinterstitialsolidsolution(2)Latticeaberranceinducedbythelargeandsmallsoluteatomsintheinterstitialsolidsolutiond).Themicrocosmicnonuniformofthesolid
solutionThedistributionofthesoluteatomsinthesolidsolutionisnotallunordered.Atgivenconditions,soluteatomsandsolventatomsaligninanorderandformtheorderedsolidsolution.Theratioofthesoluteatomswiththesolventatomsisafixedvalueanditcanbeexpressedbyachemicalmolecularformula.Theorderedsolidsolutionstructurecanbenamedassuperlattice.
Forexample:forCu-Alalloy,Cu:Al=1:1or3:1
orderedsuperlatticeCuAlorCu3Ale).PropertiesofthesolidsolutionChangesoflatticeparameters
Substitutionsolidsolution
:
rsolute>rsolvent,anincrease;rsolute<rsolvent,adecrease.
Interstitialsolidsolution:
aincreaseswiththedissolvingofthesolute.
Strengtheningofthesolidsolution.changesofthephysicalandchemicalproperties.2.interphase
Interphase:
Interphaseisanewphaseformedinthereactionamongtheelementsofthealloy,itcanbecompoundandcompound-basedsolidsolution.Thebondingmanneroftheatomsintheinterphase:
Mixtureofmetallicbondingandotherbonding.Theyhavethemetallicproperties.Forexample:
Fe3Cinsteel,CuAlincu-alalloy,NiTiandCuZninshapememoryalloy,etc.Classificationofinterphase:
Valence
compound,electroncompound,size-factorcompound(interstitialphase,interstitialcompound,TCPphase),superstructure.a).valencecompoundValencecompound:
includingsuchcompoundsformedbysomemetalsandelementswithlargerelectronegativityinⅥA,ⅤA,ⅣA.Forexample:ABtype(MgS,MnS,FeS),AB2(Mg2Pb,Mg2Sn)orA2Btype(Mg2Ge,Mg2Si),A3B2type.Valencecompoundhasveryhighandrigidityandbrittleness,whichcanenhancetherigidityandbrittlenessofthematerialsintheindustryalloys.
Forexample:
Mg2SiinAl-Mg-Sialloy.b).electroncompo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國鉛白市場發(fā)展現(xiàn)狀及前景趨勢分析報告
- 2025-2030年中國鎢鐵行業(yè)發(fā)展現(xiàn)狀及前景趨勢分析報告
- 2025-2030年中國轎車懸架彈簧轎行業(yè)發(fā)展?fàn)顩r及前景趨勢分析報告
- 2025-2030年中國葡萄糖酸鈣市場競爭狀況及投資趨勢分析報告
- 2025-2030年中國色選機(jī)市場競爭格局及發(fā)展趨勢分析報告
- 2025-2030年中國紡織品直噴墨水行業(yè)發(fā)展趨勢與十三五規(guī)劃研究報告
- 2025-2030年中國立磨市場運(yùn)行態(tài)勢及投資戰(zhàn)略研究報告
- 2025-2030年中國硫磺回收市場運(yùn)行狀況及發(fā)展趨勢預(yù)測報告
- 2025-2030年中國石蠟行業(yè)市場運(yùn)行狀況及發(fā)展策略分析報告
- T-CHAS 20-2-11-2022 醫(yī)療機(jī)構(gòu)藥事管理與藥學(xué)服務(wù) 第2-11部分:臨床藥學(xué)服務(wù) 治療藥物監(jiān)測
- 質(zhì)量部架構(gòu)圖
- 結(jié)構(gòu)化學(xué)-第1章講義課件
- 粉塵防爆安全管理臺賬-全套
- 廣州退休申請表范本
- 管道完整性管理方法及應(yīng)用
- 傳媒侵權(quán)法介紹
- 麥茬花生高產(chǎn)栽培技術(shù)
- 玉米制種技術(shù)
- 中國旅游資源概述
- 高一下分科文科班第一次主題班會
評論
0/150
提交評論