新高考數(shù)學(xué)三輪沖刺大題突破練習(xí)專題06 導(dǎo)數(shù)(原卷版)_第1頁(yè)
新高考數(shù)學(xué)三輪沖刺大題突破練習(xí)專題06 導(dǎo)數(shù)(原卷版)_第2頁(yè)
新高考數(shù)學(xué)三輪沖刺大題突破練習(xí)專題06 導(dǎo)數(shù)(原卷版)_第3頁(yè)
新高考數(shù)學(xué)三輪沖刺大題突破練習(xí)專題06 導(dǎo)數(shù)(原卷版)_第4頁(yè)
新高考數(shù)學(xué)三輪沖刺大題突破練習(xí)專題06 導(dǎo)數(shù)(原卷版)_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題06導(dǎo)數(shù)應(yīng)用解析幾何一般作為解答題21題或者是22題形式出現(xiàn)。一般作為壓軸題或者是次壓軸題出現(xiàn),難度較大。1極值點(diǎn)偏移,拐點(diǎn)偏移2函數(shù)放縮問題3端點(diǎn)效應(yīng)問題4隱零點(diǎn)問題5同構(gòu)問題6雙變量恒成立使成立問題7與三角函數(shù)知識(shí)交叉問題8新定義問題題型一:極值點(diǎn)偏移,拐點(diǎn)偏移問題1已知函數(shù)SKIPIF1<0.(I)若SKIPIF1<0為SKIPIF1<0上的增函數(shù),求SKIPIF1<0的取值范圍;(II)若SKIPIF1<0,且SKIPIF1<0,證明:SKIPIF1<0.(拐點(diǎn)偏移)題型二:函數(shù)放縮問題1已知函數(shù)SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0為自然對(duì)數(shù)的底數(shù).(1)討論SKIPIF1<0的單調(diào)性;(2)當(dāng)SKIPIF1<0時(shí),證明:對(duì)任意的SKIPIF1<0,SKIPIF1<0【解析】(1)由題意,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.(2)要證SKIPIF1<0,只需證SKIPIF1<0,即證SKIPIF1<0,也即SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,即SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0有2個(gè)零點(diǎn)SKIPIF1<0和1,其中SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,結(jié)合SKIPIF1<0知SKIPIF1<0恒成立,從而SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),對(duì)任意的SKIPIF1<0恒成立.1已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0,證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0題型三:端點(diǎn)效應(yīng)問題1設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0為自然對(duì)數(shù)的底數(shù).(1)討論SKIPIF1<0的單調(diào)性;(2)證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;(3)確定SKIPIF1<0的所有可能取值,使得SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)恒成立.【解析】(1)由題意,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)當(dāng)SKIPIF1<0時(shí),要證SKIPIF1<0,只需證SKIPIF1<0,即證SKIPIF1<0,也即SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,結(jié)合SKIPIF1<0知SKIPIF1<0恒成立,所以SKIPIF1<0,故SKIPIF1<0成立.(3)解法1:由題意,SKIPIF1<0等價(jià)于SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0恒成立,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,結(jié)合SKIPIF1<0知SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,從而SKIPIF1<0,符合題意,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由(1)可得SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,另一方面,由(2)可得當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,從而當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,不合題意,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,結(jié)合SKIPIF1<0知SKIPIF1<0,即SKIPIF1<0,不合題意,綜上所述,實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.1設(shè)函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的單調(diào)區(qū)間;(2)若當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,求SKIPIF1<0的取值范圍.題型四:隱零點(diǎn)問題.已知函數(shù)SKIPIF1<0(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的單調(diào)區(qū)間;(2)如果SKIPIF1<0,SKIPIF1<0是曲線SKIPIF1<0上的任意一點(diǎn),若以SKIPIF1<0,SKIPIF1<0為切點(diǎn)的切線的斜率SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的最小值;(3)討論關(guān)于SKIPIF1<0的方程SKIPIF1<0的實(shí)根的個(gè)數(shù)情況.【解析】解:(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,定義域?yàn)镾KIPIF1<0,SKIPIF1<0則SKIPIF1<0令SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0.(2)由題意,SKIPIF1<0,以SKIPIF1<0,SKIPIF1<0為切點(diǎn)的切線的斜率SKIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0對(duì)SKIPIF1<0恒成立.又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0(3)由題意,方程SKIPIF1<0化簡(jiǎn)得SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,在區(qū)間SKIPIF1<0上單調(diào)遞減.SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0處取得極大值,即最大值,最大值為SKIPIF1<0(1)SKIPIF1<0所以當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí),SKIPIF1<0的圖象與SKIPIF1<0軸恰有兩個(gè)交點(diǎn),方程SKIPIF1<0有兩個(gè)實(shí)根;SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的圖象與SKIPIF1<0軸恰有一個(gè)交點(diǎn),方程SKIPIF1<0有一個(gè)實(shí)根;SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的圖象與SKIPIF1<0軸無交點(diǎn),方程SKIPIF1<0無實(shí)根.SKIPIF1<01已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若函數(shù)SKIPIF1<0有且僅有3個(gè)零點(diǎn),求SKIPIF1<0的取值范圍.(其中常數(shù)SKIPIF1<0,是自然對(duì)數(shù)的底數(shù))類型五同構(gòu)問題同構(gòu)法的三種基本模式1.乘積型:將兩個(gè)式子分別同構(gòu)變形成幾個(gè)數(shù)的乘積,或者將等式(不等式)兩邊同構(gòu)變形成幾個(gè)數(shù)的積;2.比商型:將兩個(gè)式子分別同構(gòu)變形成兩個(gè)數(shù)的商,或者將等式(不等式)兩邊同構(gòu)變形成幾個(gè)數(shù)的商;3.和差型:將兩個(gè)式子分別同構(gòu)變形成幾個(gè)數(shù)的和與差,或者將等式(不等式)兩邊同構(gòu)變形成幾個(gè)數(shù)的和與差.三、常用的同構(gòu)變形1.對(duì)數(shù)恒等式(黃金變換):SKIPIF1<0,特別的SKIPIF1<0;2.常見變形(利用對(duì)數(shù)恒等式變形而來)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.1(2022武漢二調(diào)?22)已知函數(shù)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的值;(2)討論SKIPIF1<0的零點(diǎn).解:(1)略;(2)由SKIPIF1<0得SKIPIF1<0(觀察SKIPIF1<0的形式進(jìn)行同構(gòu)變形),即SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,函數(shù)SKIPIF1<0遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,函數(shù)SKIPIF1<0遞增,而SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0(不能同時(shí)滿足),顯然方程SKIPIF1<0有一個(gè)解,由SKIPIF1<0得SKIPIF1<0,設(shè)SKIPIF1<0(SKIPIF1<0),則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0單調(diào)遞增,所以當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有最小值SKIPIF1<0,于是當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有一個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有二個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有三個(gè)零點(diǎn).(2022湖北八市3月聯(lián)考22)設(shè)函數(shù)SKIPIF1<0(SKIPIF1<0為自然對(duì)數(shù)的底).(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,求實(shí)數(shù)SKIPIF1<0的取值范圍.類型六雙變量恒成立使成立問題已知SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求證:SKIPIF1<0.【解析】(1)解:函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,因?yàn)镾KIPIF1<0恒成立,所以函數(shù)SKIPIF1<0在SKIPIF1<0為減函數(shù),故函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0;(2)證明:不妨設(shè)SKIPIF1<0,先證SKIPIF1<0,只要證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則需證SKIPIF1<0,由(1)知,SKIPIF1<0在SKIPIF1<0為減函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,又SKIPIF1<0(1)SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0得證;下面再證SKIPIF1<0,即證SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,只要證SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0恒成立,故SKIPIF1<0在SKIPIF1<0為減函數(shù),所以SKIPIF1<0(1),則SKIPIF1<0,所以SKIPIF1<0成立.綜上所述,SKIPIF1<0.已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0,SKIPIF1<0(1)SKIPIF1<0處的切線方程;(2)若SKIPIF1<0,求SKIPIF1<0在區(qū)間SKIPIF1<0,SKIPIF1<0上的最小值;(3)若函數(shù)SKIPIF1<0有兩個(gè)極值點(diǎn)SKIPIF1<0,SKIPIF1<0,求證:SKIPIF1<0.類型七與三角函數(shù)知識(shí)交叉問題1已知函數(shù)SKIPIF1<0為SKIPIF1<0的導(dǎo)數(shù).(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的最小值;(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍.【解析】(1)由題意,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0的最小值為SKIPIF1<0.(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0等價(jià)于SKIPIF1<0(1),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0等價(jià)于SKIPIF1<0(2),設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),由(1)可得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,結(jié)合SKIPIF1<0知SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0恒成立,而在SKIPIF1<0上,SKIPIF1<0,從而SKIPIF1<0,滿足(1),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,易得SKIPIF1<0在SKIPIF1<0上為增函數(shù),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上有一個(gè)零點(diǎn)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,從而SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上有一個(gè)零點(diǎn)SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上恒成立,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0恒成立,從而SKIPIF1<0,滿足(2),所以當(dāng)SKIPIF1<0時(shí),滿足題意,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上有一個(gè)零點(diǎn)SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,從而SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,不滿足(1),不合題意,綜上所述,實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.1.已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0在SKIPIF1<0處的切線方程;(2)對(duì)任意的SKIPIF1<0,都有SKIPIF1<0,求a的取值范圍.類型八新定義問題1若函數(shù)SKIPIF1<0同時(shí)滿足下列兩個(gè)條件,則稱SKIPIF1<0在SKIPIF1<0上具有性質(zhì)SKIPIF1<0.①SKIPIF1<0在SKIPIF1<0上的導(dǎo)數(shù)SKIPIF1<0存在;②SKIPIF1<0在SKIPIF1<0上的導(dǎo)數(shù)SKIPIF1<0存在,且SKIPIF1<0(其中SKIPIF1<0)恒成立.(1)判斷函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是否具有性質(zhì)SKIPIF1<0?并說明理由.(2)設(shè)SKIPIF1<0、SKIPIF1<0均為實(shí)常數(shù),若奇函數(shù)SKIPIF1<0在SKIPIF1<0處取得極值,是否存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0在區(qū)間SKIPIF1<0上具有性質(zhì)SKIPIF1<0?若存在,求出SKIPIF1<0的取值范圍;若不存在,請(qǐng)說明理由.(3)設(shè)SKIPIF1<0且SKIPIF1<0,對(duì)于任意的SKIPIF1<0,不等式SKIPIF1<0成立,求SKIPIF1<0的最大值.【答案】(1)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上具有性質(zhì)SKIPIF1<0;(2)存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0在區(qū)間SKIPIF1<0上具有性質(zhì)SKIPIF1<0,SKIPIF1<0的取值范圍是SKIPIF1<0;(3)SKIPIF1<0的最大值為SKIPIF1<0.【詳解】(1)令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,∴函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上具有性質(zhì)SKIPIF1<0;(2)∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0在SKIPIF1<0處取得極值,且SKIPIF1<0為奇函數(shù),∴SKIPIF1<0在SKIPIF1<0處也取得極值,∴SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,解得SKIPIF1<0;令SKIPIF1<0,解得SKIPIF1<0;故SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,滿足SKIPIF1<0在SKIPIF1<0處取得極值,∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,∴存在實(shí)數(shù)SKIPIF1<0,使SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,∴存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0在區(qū)間SKIPIF1<0上具有性質(zhì)SKIPIF1<0,SKIPIF1<0的取值范圍是SKIPIF1<0;(3)∵SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,又∵SKIPIF1<0,SKIPIF1<0,∴存在SKIPIF1<0,使SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為SKIPIF1<0,由SKIPIF1<0,有SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0恒成立,∴SKIPIF1<0,∵SKIPIF1<0且SKIPIF1<0,∴SKIPIF1<0的最大值為SKIPIF1<0.1.對(duì)于函數(shù)f(x),若存在實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,則稱SKIPIF1<0為函數(shù)f(x)的一個(gè)不動(dòng)點(diǎn).已知函數(shù)SKIPIF1<0,其中SKIPIF1<0(1)當(dāng)SKIPIF1<0時(shí),(i)求f(x)的極值點(diǎn);(ii)若存在SKIPIF1<0既是f(x)的極值點(diǎn),又是f(x)的不動(dòng)點(diǎn),求b的值:(2)若f(x)有兩個(gè)相異的極值點(diǎn)SKIPIF1<0,SKIPIF1<0,試問:是否存在a,b使得SKIPIF1<0,SKIPIF1<0均為f(x)的不動(dòng)點(diǎn)?證明你的結(jié)論.一、解答題1.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0.(1)設(shè)函數(shù)SKIPIF1<0,且SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)求證:SKIPIF1<0;(3)設(shè)函數(shù)SKIPIF1<0的兩個(gè)零點(diǎn)SKIPIF1<0、SKIPIF1<0,求證:SKIPIF1<0.2.(2023春·上海普陀·高三曹楊二中??茧A段練習(xí))已知函數(shù)SKIPIF1<0和SKIPIF1<0的定義域分別為SKIPIF1<0和SKIPIF1<0,若對(duì)任意的SKIPIF1<0都存在SKIPIF1<0個(gè)不同的實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,使得SKIPIF1<0(其中SKIPIF1<0,SKIPIF1<0為正整數(shù)),則稱SKIPIF1<0為SKIPIF1<0的“SKIPIF1<0重覆蓋函數(shù)”.(1)SKIPIF1<0是否為SKIPIF1<0的“2重覆蓋函數(shù)”?請(qǐng)說明理由;(2)求證:SKIPIF1<0是SKIPIF1<0的“4重覆蓋函數(shù)”;(3)已知SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0為SKIPIF1<0的“3重覆蓋函數(shù)”,求實(shí)數(shù)SKIPIF1<0的范圍.3.(2023·四川涼山·二模)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若函數(shù)SKIPIF1<0有兩個(gè)不同的極值點(diǎn)SKIPIF1<0,證明:SKIPIF1<0.4.(2023春·云南曲靖·高三統(tǒng)考階段練習(xí))已知函數(shù)SKIPIF1<0滿足SKIPIF1<0恒成立.(1)求SKIPIF1<0的取值范圍;(2)設(shè)SKIPIF1<0,求SKIPIF1<0在SKIPIF1<0上的零點(diǎn)個(gè)數(shù);(3)在(2)的條件下,設(shè)SKIPIF1<0在SKIPIF1<0上最小的零點(diǎn)為SKIPIF1<0,若SKIPIF1<0且SKIPIF1<0,求證:SKIPIF1<0.5.(2023春·四川德陽(yáng)·高二德陽(yáng)五中??茧A段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0(1)若SKIPIF1<0,試確定函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0,且對(duì)于任意SKIPIF1<0,SKIPIF1<0恒成立,求實(shí)數(shù)k的取值范圍;(3)令SKIPIF1<0,若至少存在一個(gè)實(shí)數(shù)SKIPIF1<0,使SKIPIF1<0成立,求實(shí)數(shù)k的取值范圍.6.(2023·全國(guó)·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0在SKIPIF1<0上的最大值為SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的值.(2)若SKIPIF1<0存在兩個(gè)零點(diǎn)SKIPIF1<0,SKIPIF1<0.①求實(shí)數(shù)SKIPIF1<0的取值范圍;②證明:SKIPIF1<0.7.(2023·全國(guó)·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.(1)求SKIPIF1<0的最大值;(2)證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上僅有一個(gè)零點(diǎn).8.(2023春·重慶渝中·高二重慶巴蜀中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,(i)求SKIPIF1<0的極值.(ii)設(shè)SKIPIF1<0,證明:SKIPIF1<0.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論