高一數(shù)學(xué)《等比數(shù)列的性質(zhì)及應(yīng)用》教案設(shè)計(jì)【8篇】_第1頁
高一數(shù)學(xué)《等比數(shù)列的性質(zhì)及應(yīng)用》教案設(shè)計(jì)【8篇】_第2頁
高一數(shù)學(xué)《等比數(shù)列的性質(zhì)及應(yīng)用》教案設(shè)計(jì)【8篇】_第3頁
高一數(shù)學(xué)《等比數(shù)列的性質(zhì)及應(yīng)用》教案設(shè)計(jì)【8篇】_第4頁
高一數(shù)學(xué)《等比數(shù)列的性質(zhì)及應(yīng)用》教案設(shè)計(jì)【8篇】_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第第頁高一數(shù)學(xué)《等比數(shù)列的性質(zhì)及應(yīng)用》教案設(shè)計(jì)【8篇】(高一數(shù)學(xué)《等比數(shù)列的性質(zhì)及應(yīng)用》教案設(shè)計(jì)【8篇】(經(jīng)典版)編制人:__________________審核人:__________________審批人:__________________編制單位:__________________編制時(shí)間:____年____月____日序言下載提示:該文檔是本店鋪精心編制而成的,希望大家下載后,能夠幫助大家解決實(shí)際問題。文檔下載后可定制修改,請根據(jù)實(shí)際需要進(jìn)行調(diào)整和使用,謝謝!并且,本店鋪為大家提供各種類型的經(jīng)典范文,如計(jì)劃報(bào)告、合同協(xié)議、心得體會、演講致辭、條據(jù)文書、策劃方案、規(guī)章制度、教學(xué)資料、作文大全、其他范文等等,想了解不同范文格式和寫法,敬請關(guān)注!Downloadtips:Thisdocumentiscarefullycompiledbythiseditor.Ihopethatafteryoudownloadit,itcanhelpyousolvepracticalproblems.Thedocumentcanbecustomizedandmodifiedafterdownloading,pleaseadjustanduseitaccordingtoactualneeds,thankyou!Moreover,ourstoreprovidesvarioustypesofclassicsampleessays,suchasplanreports,contractagreements,insights,speeches,policydocuments,planningplans,rulesandregulations,teachingmaterials,completeessays,andothersampleessays.Ifyouwouldliketolearnaboutdifferentsampleformatsandwritingmethods,pleasestaytuned!高一數(shù)學(xué)《等比數(shù)列的性質(zhì)及應(yīng)用》教案設(shè)計(jì)【8篇】

等比數(shù)列的性質(zhì)是什么呢?是什么意思?等比數(shù)列是指從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比值等于同一個(gè)常數(shù)的一種數(shù)列,常用G、P表示。這個(gè)常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0),等比數(shù)列a1≠0。其中{an}中的每一項(xiàng)均不為0。注:q=1時(shí),an為常數(shù)列。下面是本店鋪辛苦為朋友們帶來的8篇《高一數(shù)學(xué)《等比數(shù)列的性質(zhì)及應(yīng)用》教案設(shè)計(jì)》,希望能為您的思路提供一些參考。

等比數(shù)列篇一

教學(xué)目的:1.靈活應(yīng)用等比數(shù)列的定義及通項(xiàng)公式。2.熟悉等比數(shù)列的有關(guān)性質(zhì),并系統(tǒng)了解判斷數(shù)列是否成等比數(shù)列的方法。教學(xué)重點(diǎn):等比中項(xiàng)的應(yīng)用及等比數(shù)列性質(zhì)的應(yīng)用。教學(xué)難點(diǎn):靈活應(yīng)用等比數(shù)列定義、通項(xiàng)公式、性質(zhì)解決一些相關(guān)問題教學(xué)過程:一、復(fù)習(xí):等比數(shù)列的定義、通項(xiàng)公式、等比中項(xiàng)二、講解新課:1.等比數(shù)列的性質(zhì):若m+n=p+q,則2.判斷等比數(shù)列的方法:定義法,中項(xiàng)法,通項(xiàng)公式法3.等比數(shù)列的增減性:當(dāng)q>1,>0或01,0時(shí),{}是遞減數(shù)列;當(dāng)q=1時(shí),{}是常數(shù)列;當(dāng)q推薦等比數(shù)列教案篇二

1、教材的地位和作用:

《等差數(shù)列》是人教版新課標(biāo)教材《數(shù)學(xué)》必修5第二章第二節(jié)的內(nèi)容。數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一、它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。

2、教學(xué)目標(biāo)

根據(jù)教學(xué)大綱的要求和學(xué)生的實(shí)際水平,確定了本次課的教學(xué)目標(biāo)

a知識與技能:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想;初步引入“數(shù)學(xué)建?!钡乃枷敕椒ú⒛苓\(yùn)用。培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。

b.過程與方法:在教學(xué)過程中我采用討論式、啟發(fā)式的方法使學(xué)生深刻的理解不完全歸納法。

c.情感態(tài)度與價(jià)值觀:通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。

3、教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):①等差數(shù)列的概念。

②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。

難點(diǎn):①等差數(shù)列的通項(xiàng)公式的推導(dǎo)

②用數(shù)學(xué)思想解決實(shí)際問題

對于高一學(xué)生,知識經(jīng)驗(yàn)已較為豐富,具備了一定的抽象思維能力和演繹推理能力,所以我本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實(shí)踐活動,以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。學(xué)生在初中時(shí)只是簡單的接觸過等差數(shù)列,具體的公式還不會用,因些在公式應(yīng)用上加強(qiáng)學(xué)生的理解

在引導(dǎo)分析時(shí),留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

1.創(chuàng)設(shè)情景提出問題

首先要學(xué)生回憶數(shù)列的有關(guān)概念,數(shù)列的兩種方法——通項(xiàng)公式和遞推公式

推薦等比數(shù)列教案篇三

各位領(lǐng)導(dǎo)、各位專家:

你們好!我說課的課題是《等差數(shù)列》。我將從以下五個(gè)方面來分析本課題:

1、教材的地位和作用:

《等差數(shù)列》是北師大版新課標(biāo)教材《數(shù)學(xué)》必修5第一章第二節(jié)的內(nèi)容,是學(xué)生在學(xué)習(xí)了數(shù)列的有關(guān)概念和學(xué)習(xí)了給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對數(shù)列知識的進(jìn)一步深入和拓展。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。另一方面,等差數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分,有著廣泛的實(shí)際應(yīng)用。

2、教學(xué)目標(biāo):

a、在知識上,要求學(xué)生理解并掌握等差數(shù)列的概念,了解等差數(shù)列通項(xiàng)公式的推導(dǎo)及思想,初步引入“數(shù)學(xué)建?!钡乃枷敕椒ú⒛芎唵芜\(yùn)用。

b、在能力上,注重培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會了函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移到研究數(shù)列上來,培養(yǎng)學(xué)生的知識、方法遷移能力,提高學(xué)生分析和解決問題的能力。

c、在情感上,通過對等差數(shù)列的研究,讓學(xué)生體驗(yàn)從特殊到一般,又到特殊的認(rèn)識事物的規(guī)律,培養(yǎng)學(xué)生勇于創(chuàng)新的科學(xué)精神。

3、教學(xué)重、難點(diǎn):

重點(diǎn):

①等差數(shù)列的概念。

②等差數(shù)列通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。

難點(diǎn):

①等差數(shù)列的通項(xiàng)公式的推導(dǎo)。

②用數(shù)學(xué)思想解決實(shí)際問題。

對于高二的學(xué)生,知識經(jīng)驗(yàn)已經(jīng)比較豐富,他們的智力發(fā)展已經(jīng)到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力。

教法:本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過提問題激發(fā)學(xué)生的求知欲,使學(xué)生主動參與數(shù)學(xué)實(shí)踐活動,以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析并解決問題。

學(xué)法:在引導(dǎo)學(xué)生分析問題時(shí),留出學(xué)生思考的余地,讓學(xué)生去聯(lián)想、探索,鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞等差數(shù)列這個(gè)中心各抒己見,把需要解決的問題弄清楚。

我把本節(jié)課的教學(xué)過程分為六個(gè)環(huán)節(jié):

(一)創(chuàng)設(shè)情境,提出問題

問題情境(通過多媒體給出現(xiàn)實(shí)生活中的四個(gè)特殊的數(shù)列)

1、我們經(jīng)常這樣數(shù)數(shù),從0開始,每隔5數(shù)一次,可以得到數(shù)列:0,5.10,15.20,①

2、2000年,在澳大利亞悉尼舉行的奧運(yùn)會上,女子舉重被正式列為比賽項(xiàng)目,該項(xiàng)目共設(shè)置了7個(gè)級別,其中較輕的4個(gè)級別體重組成數(shù)列(單位:kg):48,53.58,63②

3、水庫的管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚。如果一個(gè)水庫的水位為18m,自然放水每天水位降低2.5.最低降至5那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫每天的水位組成數(shù)列(單位:m):18,15、5.13.10、5.8,5、5③

4、按照我國現(xiàn)行儲蓄制度(單利)某人按活期存入10000元錢,5年內(nèi)各年末的本利和(單位:元)組成了數(shù)列:10072.10144.10216,10288,10360④

教師活動:引導(dǎo)學(xué)生觀察以上數(shù)列,提出問題:

問題1、請說出這四個(gè)數(shù)列的后面一項(xiàng)是多少?

問題2、說出這四個(gè)數(shù)列有什么共同特點(diǎn)?

(二)新課探究

學(xué)生活動:對于問題1.學(xué)生容易給出答案。而問題2對學(xué)生來說較為抽象,不易回答準(zhǔn)確。

教師活動:為引導(dǎo)學(xué)生得出等差數(shù)列的概念,我對學(xué)生的表述進(jìn)行歸類,引導(dǎo)學(xué)生得出關(guān)鍵詞“從第2項(xiàng)起”、“每一項(xiàng)與前一項(xiàng)的差”、“同一個(gè)常數(shù)”告訴他們把滿足這些條件的數(shù)列叫做等差數(shù)列,之后由他們集體給出等差數(shù)列的概念以及其數(shù)學(xué)表達(dá)式。

同時(shí)為了配合概念的理解,用多媒體給出三個(gè)數(shù)列,由學(xué)生進(jìn)行判斷:

判斷下面的數(shù)列是否為等差數(shù)列,是等差數(shù)列的找出公差

1、1.2.3.4.5.6,;(√,d=(1)

2、0、9,0、7,0、5.0、3.0、1;(√,d=—0、(2)

3、0,0,0,0,0,0,;(√,d=0)

其中第一個(gè)數(shù)列公差0,第二個(gè)數(shù)列公差

由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0

在理解等差數(shù)列概念的基礎(chǔ)上提出:

問題3、如果等差數(shù)列的首項(xiàng)是a1.公差是d,如何用首項(xiàng)和公差將an表示出來?

教師活動:為引導(dǎo)學(xué)生得出通項(xiàng)公式,我采用討論式的教學(xué)方法。讓學(xué)生自由分組討論,在學(xué)生討論時(shí)引導(dǎo)他們得出a10=a1+9d,a40=a1+39d,進(jìn)而猜想an=a1+(n—(1)d。

整個(gè)過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識又化解了教學(xué)難點(diǎn)。

此時(shí)指出:這就是不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,進(jìn)而提出:

問題4、怎么樣嚴(yán)謹(jǐn)?shù)那蟪龅炔顢?shù)列的通項(xiàng)公式?

利用等差數(shù)列概念啟發(fā)學(xué)生寫出n—1個(gè)等式。對照已歸納出的通項(xiàng)公式啟發(fā)學(xué)生想出將n—1個(gè)等式相加,最后證出通項(xiàng)公式。在這里通過該知識點(diǎn)引入迭加法這一數(shù)學(xué)思想,逐步達(dá)到“注重方法,凸現(xiàn)思想”的教學(xué)要求。

接著舉例說明:若一個(gè)等差數(shù)列{an}的首項(xiàng)是1.公差是2.得出這個(gè)數(shù)列的通項(xiàng)公式是:an=1+(n—(1)X2.即an=2n—1、以此來鞏固等差數(shù)列通項(xiàng)公式運(yùn)用,同時(shí)要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n的一次函數(shù),其圖像是均勻排開的無窮多個(gè)孤立點(diǎn)。這一題用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。

(三)應(yīng)用舉例

這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強(qiáng)對通項(xiàng)公式的理解及運(yùn)用,提高解決實(shí)際問題的能力。通過例1和例2向?qū)W生表明:要用運(yùn)動變化的觀點(diǎn)看等差數(shù)列通項(xiàng)公式中的a

1、d、n、an這4個(gè)量之間的關(guān)系。當(dāng)其中的部分量已知時(shí),可根據(jù)該公式求出另一部分量。

例(11)求等差數(shù)列8,5.2.的第20項(xiàng);第30項(xiàng);第40項(xiàng)(2)—401是不是等差數(shù)列—5.—9,—13.的項(xiàng)?如果是,是第幾項(xiàng)?

在第一問中我添加了計(jì)算第30項(xiàng)和第40項(xiàng)以加強(qiáng)鞏固等差數(shù)列通項(xiàng)公式;第二問實(shí)際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項(xiàng)公式an

例2在等差數(shù)列{an}中,已知a5=10,a12=31.求首項(xiàng)a1與公差d、在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對通項(xiàng)公式的鞏固。

例3是一個(gè)實(shí)際建模問題

某出租車的計(jì)價(jià)標(biāo)準(zhǔn)為1、2元/km,起步價(jià)為10元,即最初的4km(不含4千米)計(jì)費(fèi)10元。如果某人乘坐該市的出租車去往14km處的目的地,且一路暢通,等候時(shí)間為0,需要支付多少車費(fèi)?

這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意“出租車的計(jì)價(jià)標(biāo)準(zhǔn)為1、2元/km”使學(xué)生想到在每個(gè)整公里時(shí)出租車的車費(fèi)構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型。

設(shè)置此題的目的:加強(qiáng)學(xué)生對“數(shù)學(xué)建模”思想的認(rèn)識。

(四)反饋練習(xí)

1、小節(jié)后的練習(xí)中的第1題

目的:使學(xué)生熟悉通項(xiàng)公式,對學(xué)生進(jìn)行基本技能訓(xùn)練。

2、小節(jié)后的練習(xí)中的第2題

目的:對學(xué)生加強(qiáng)建模思想訓(xùn)練。

3、課本p38例3(備用)

已知數(shù)列{an}的通項(xiàng)公式anpnq,其中p、q是常數(shù),那么這個(gè)數(shù)列是否一定是等差數(shù)列?若是,首項(xiàng)與公差分別是什么?它與函數(shù)y=pX+q兩者圖象間有什么關(guān)系?

目的:此題是對學(xué)生進(jìn)行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義解決數(shù)列問題同時(shí)強(qiáng)化了等差數(shù)列的概念;進(jìn)而讓學(xué)生從數(shù)(結(jié)構(gòu)特征)與形(圖象)上進(jìn)一步認(rèn)識到等差數(shù)列的通項(xiàng)公式與一次函數(shù)之間的關(guān)系

(五)歸納小結(jié)

(由學(xué)生總結(jié)這節(jié)課的收獲)

1、等差數(shù)列的概念及數(shù)學(xué)表達(dá)式

強(qiáng)調(diào)關(guān)鍵詞:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)

2、等差數(shù)列的通項(xiàng)公式an=a1+(n—(1)d會知三求一

3、用“數(shù)學(xué)建?!彼枷敕椒ń鉀Q實(shí)際問題

(六)布置作業(yè)

必做題:課本p40習(xí)題2、2a組第1、3、4題

選做題:課本p40習(xí)題2、2b組第1題

課后實(shí)踐:

將學(xué)生分成三個(gè)小組,要求他們分別找出現(xiàn)實(shí)生活中公差大于、小于、等于0的典型的等差數(shù)列的模型,在下節(jié)課派代表為我們講解所選的等差數(shù)列。

目的是讓學(xué)生主動參與具體的教學(xué)實(shí)踐,進(jìn)一步鞏固知識,激發(fā)興趣。

五、結(jié)束

本節(jié)課我根據(jù)高二學(xué)生的心理特征及認(rèn)知規(guī)律,通過一系列問題貫穿教學(xué)始終,符合新課標(biāo)要求的“以教師為主導(dǎo),學(xué)生為主體”的思想,并最終達(dá)到預(yù)期的教學(xué)效果。

我的說課完畢,謝謝!

教學(xué)過程篇四

一、提出問題

給出以下幾組數(shù)列,將它們分類,說出分類標(biāo)準(zhǔn)。(幻燈片)

①-2.1.4.7,10,13.16,19,…

②8,16,32.64.128,256,…

③1.1.1.1.1.1.1.…

④243.81.27,9,3.1.,…

⑤31.29,27,25.23.21.19,…

⑥1.-1.1.-1.1.-1.1.-1.…

⑦1.-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由學(xué)生·發(fā)表意見(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動數(shù)列,也可能分為等差、等比兩類)統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為等比數(shù)列)。

二、講解新課

請學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲分裂問題。假設(shè)每經(jīng)過一個(gè)單位時(shí)間每個(gè)變形蟲都分裂為兩個(gè)變形蟲,再假設(shè)開始有一個(gè)變形蟲,經(jīng)過一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲,經(jīng)過兩個(gè)單位時(shí)間就有了四個(gè)變形蟲,…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲個(gè)數(shù)得到了一列數(shù)這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列。(這里播放變形蟲分裂的多媒體軟件的第一步)

等比數(shù)列(板書)

1、等比數(shù)列的定義(板書)

根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義。學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的。教師寫出等比數(shù)列的定義,標(biāo)注出重點(diǎn)詞語。

請學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是等比數(shù)列。學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例。而后請學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是等比數(shù)列,當(dāng)時(shí),它只是等差數(shù)列,而不是等比數(shù)列。教師追問理由,引出對等比數(shù)列的認(rèn)識:

2、對定義的認(rèn)識(板書)

(1)等比數(shù)列的首項(xiàng)不為0;

(2)等比數(shù)列的每一項(xiàng)都不為0,即;

問題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為等比數(shù)列的什么條件?

(3)公比不為0.

用數(shù)學(xué)式子表示等比數(shù)列的定義。

是等比數(shù)列①。在這個(gè)式子的寫法上可能會有一些爭議,如寫成,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為是等比數(shù)列?為什么不能?

式子給出了數(shù)列第項(xiàng)與第項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)等比數(shù)列?(不能)確定一個(gè)等比數(shù)列需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式。

3、等比數(shù)列的通項(xiàng)公式(板書)

問題:用和表示第項(xiàng)。

①不完全歸納法

。

②疊乘法

,…,這個(gè)式子相乘得,所以。

(板書)(1)等比數(shù)列的通項(xiàng)公式

得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識通項(xiàng)公式。

(板書)(2)對公式的認(rèn)識

由學(xué)生來說,最后歸結(jié):

①函數(shù)觀點(diǎn);

②方程思想(因在等差數(shù)列中已有認(rèn)識,此處再復(fù)習(xí)鞏固而已)。

這里強(qiáng)調(diào)方程思想解決問題。方程中有四個(gè)量,知三求一、這是公式最簡單的應(yīng)用,請學(xué)生舉例(應(yīng)能編出四類問題)。解題格式是什么?(不僅要會解題,還要注意規(guī)范表述的訓(xùn)練)

如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究。同學(xué)可以試著編幾道題。

三、小結(jié)

1、本節(jié)課研究了等比數(shù)列的概念,得到了通項(xiàng)公式;

2、注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;

3、用方程的思想認(rèn)識通項(xiàng)公式,并加以應(yīng)用。

四、作業(yè)(略)

五、板書設(shè)計(jì)

三。等比數(shù)列

1、等比數(shù)列的定義

2、對定義的認(rèn)識

3、等比數(shù)列的通項(xiàng)公式

(1)公式

(2)對公式的認(rèn)識

等比數(shù)列篇五

教學(xué)目標(biāo)

1.掌握等比數(shù)列前項(xiàng)和公式,并能運(yùn)用公式解決簡單的問題。

(1)理解公式的推導(dǎo)過程,體會轉(zhuǎn)化的思想;

(2)用方程的思想認(rèn)識等比數(shù)列前項(xiàng)和公式,利用公式知三求一;與通項(xiàng)公式結(jié)合知三求二;

2.通過公式的靈活運(yùn)用,進(jìn)一步滲透方程的思想、分類討論的思想、等價(jià)轉(zhuǎn)化的思想。

3.通過公式推導(dǎo)的教學(xué),對學(xué)生進(jìn)行思維的嚴(yán)謹(jǐn)性的訓(xùn)練,培養(yǎng)他們實(shí)事求是的科學(xué)態(tài)度。

教學(xué)建議

教材分析

(1)知識結(jié)構(gòu)

先用錯(cuò)位相減法推出等比數(shù)列前項(xiàng)和公式,而后運(yùn)用公式解決一些問題,并將通項(xiàng)公式與前項(xiàng)和公式結(jié)合解決問題,還要用錯(cuò)位相減法求一些數(shù)列的前項(xiàng)和。

(2)重點(diǎn)、難點(diǎn)分析

教學(xué)重點(diǎn)、難點(diǎn)是等比數(shù)列前項(xiàng)和公式的推導(dǎo)與應(yīng)用。公式的推導(dǎo)中蘊(yùn)含了豐富的數(shù)學(xué)思想、方法(如分類討論思想,錯(cuò)位相減法等)這些思想方法在其他數(shù)列求和問題中多有涉及,所以對等比數(shù)列前項(xiàng)和公式的要求,不單是要記住公式,更重要的是掌握推導(dǎo)公式的方法。等比數(shù)列前項(xiàng)和公式是分情況討論的,在運(yùn)用中要特別注意和兩種情況。

教學(xué)建議

(1)本節(jié)內(nèi)容分為兩課時(shí),一節(jié)為等比數(shù)列前項(xiàng)和公式的推導(dǎo)與應(yīng)用,一節(jié)為通項(xiàng)公式與前項(xiàng)和公式的綜合運(yùn)用,另外應(yīng)補(bǔ)充一節(jié)數(shù)列求和問題。

(2)等比數(shù)列前項(xiàng)和公式的推導(dǎo)是重點(diǎn)內(nèi)容,引導(dǎo)學(xué)生觀察實(shí)例,發(fā)現(xiàn)規(guī)律,歸納總結(jié),證明結(jié)論。

(3)等比數(shù)列前項(xiàng)和公式的推導(dǎo)的其他方法可以給出,提高學(xué)生學(xué)習(xí)的興趣。

(4)編擬例題時(shí)要全面,不要忽略的情況。

(5)通項(xiàng)公式與前項(xiàng)和公式的綜合運(yùn)用涉及五個(gè)量,已知其中三個(gè)量可求另兩個(gè)量,但解指數(shù)方程難度大。

(6)補(bǔ)充可以化為等差數(shù)列、等比數(shù)列的數(shù)列求和問題。

教學(xué)設(shè)計(jì)示例

課題:等比數(shù)列前項(xiàng)和的公式

教學(xué)目標(biāo)

(1)通過教學(xué)使學(xué)生掌握等比數(shù)列前項(xiàng)和公式的推導(dǎo)過程,并能初步運(yùn)用這一方法求一些數(shù)列的前項(xiàng)和。

(2)通過公式的推導(dǎo)過程,培養(yǎng)學(xué)生猜想、分析、綜合能力,提高學(xué)生的數(shù)學(xué)素質(zhì)。

(3)通過教學(xué)進(jìn)一步滲透從特殊到一般,再從一般到特殊的辯證觀點(diǎn),培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。

教學(xué)重點(diǎn),難點(diǎn)

教學(xué)重點(diǎn)是公式的推導(dǎo)及運(yùn)用,難點(diǎn)是公式推導(dǎo)的思路。

教學(xué)用具

幻燈片,課件,電腦。

教學(xué)方法

引導(dǎo)發(fā)現(xiàn)法。

教學(xué)過程

一、新課引入:

(問題見教材第129頁)提出問題:(幻燈片)

二、新課講解:

記,式中有64項(xiàng),后項(xiàng)與前項(xiàng)的比為公比2.當(dāng)每一項(xiàng)都乘以2后,中間有62項(xiàng)是對應(yīng)相等的,作差可以相互抵消。

(板書)即,①

,②

②-①得即.

由此對于一般的等比數(shù)列,其前項(xiàng)和,如何化簡?

(板書)等比數(shù)列前項(xiàng)和公式

仿照公比為2的等比數(shù)列求和方法,等式兩邊應(yīng)同乘以等比數(shù)列的公比,即

(板書)③兩端同乘以,得

④,

③-④得⑤,(提問學(xué)生如何處理,適時(shí)提醒學(xué)生注意的取值)

當(dāng)時(shí),由③可得(不必導(dǎo)出④,但當(dāng)時(shí)設(shè)想不到)

當(dāng)時(shí),由⑤得.

于是

反思推導(dǎo)求和公式的方法——錯(cuò)位相減法,可以求形如的數(shù)列的和,其中為等差數(shù)列,為等比數(shù)列。

(板書)例題:求和:.

設(shè),其中為等差數(shù)列,為等比數(shù)列,公比為,利用錯(cuò)位相減法求和。

解:,

兩端同乘以,得

,

兩式相減得

于是.

說明:錯(cuò)位相減法實(shí)際上是把一個(gè)數(shù)列求和問題轉(zhuǎn)化為等比數(shù)列求和的問題。

公式其它應(yīng)用問題注意對公比的分類討論即可。

三、小結(jié):

1.等比數(shù)列前項(xiàng)和公式推導(dǎo)中蘊(yùn)含的思想方法以及公式的應(yīng)用;

2.用錯(cuò)位相減法求一些數(shù)列的前項(xiàng)和。

四、作業(yè):略。

五、板書設(shè)計(jì):

等比數(shù)列前項(xiàng)和公式例題

等比數(shù)列篇六

教學(xué)目標(biāo)1.熟練運(yùn)用等差、等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和式以及有關(guān)性質(zhì),分析和解決等差、等比數(shù)列的綜合問題。2.突出方程思想的應(yīng)用,引導(dǎo)學(xué)生選擇簡捷合理的運(yùn)算途徑,提高運(yùn)算速度和運(yùn)算能力。3.用類比思想加深對等差數(shù)列與等比數(shù)列概念和性質(zhì)的理解。教學(xué)重點(diǎn)與難點(diǎn)用方程的觀點(diǎn)認(rèn)識等差、等比數(shù)列的基礎(chǔ)知識,從本質(zhì)上掌握公式。例題例1三個(gè)互不相等的實(shí)數(shù)成等差數(shù)列,如果適當(dāng)排列這三個(gè)數(shù)也可以成等比數(shù)列,又知這三個(gè)數(shù)的和為6,求這三個(gè)數(shù)。例2數(shù)列中,,,,,……,求的值。例3有四個(gè)數(shù),前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩個(gè)數(shù)之和是21.中間兩個(gè)數(shù)的和是18,求這四個(gè)數(shù)。例4已知數(shù)列的前項(xiàng)的和,求數(shù)列前項(xiàng)的和。例5是否存在等比數(shù)列,其前項(xiàng)的和組成的數(shù)列也是等比數(shù)列?例6數(shù)列是首項(xiàng)為0的等差數(shù)列,數(shù)列是首項(xiàng)為1的等比數(shù)列,設(shè)

,數(shù)列的前三項(xiàng)依次為1.1.2.

(1)求數(shù)列、的通項(xiàng)公式;

(2)求數(shù)列的前10項(xiàng)的和。例7已知數(shù)列滿足,,.

((1)求證:數(shù)列是等比數(shù)列;

(2)求的表達(dá)式和的表達(dá)式。

作業(yè):

1.已知同號,則是成等比數(shù)列的

(a)充分而不必要條件(b)必要而不充分條件

(c)充要條件(d)既不充分而也不必要條件

2.如果和是兩個(gè)等差數(shù)列,其中,那么等于

(a)(b)(c)3(d)

3.若某等比數(shù)列中,前7項(xiàng)和為48,前14項(xiàng)和為60,則前21項(xiàng)和為

(a)180(b)108(c)75(d)63

4.已知數(shù)列,對所有,其前項(xiàng)的積為,求的值,

5.已知為等差數(shù)列,前10項(xiàng)的和為,前100項(xiàng)的和為,求前110項(xiàng)的和

6.等差數(shù)列中,,,依次抽出這個(gè)數(shù)列的第項(xiàng),組成數(shù)列,求數(shù)列的通項(xiàng)公式和前項(xiàng)和公式。

7.已知數(shù)列,,

(1)求通項(xiàng)公式;

(2)若,求數(shù)列的最小項(xiàng)的值;

(3)數(shù)列的前項(xiàng)和為,求數(shù)列前項(xiàng)的和.

8.三數(shù)成等比數(shù)列,若第二個(gè)數(shù)加4就成等差數(shù)列,再把這個(gè)等差數(shù)列的第三個(gè)數(shù)加上32又成等比數(shù)列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論