湖南省長郡教育集團2024屆中考數(shù)學最后一模試卷含解析_第1頁
湖南省長郡教育集團2024屆中考數(shù)學最后一模試卷含解析_第2頁
湖南省長郡教育集團2024屆中考數(shù)學最后一模試卷含解析_第3頁
湖南省長郡教育集團2024屆中考數(shù)學最后一模試卷含解析_第4頁
湖南省長郡教育集團2024屆中考數(shù)學最后一模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省長郡教育集團2024屆中考數(shù)學最后一模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.二次函數(shù)(a、b、c是常數(shù),且a≠0)的圖象如圖所示,下列結論錯誤的是()A.4ac<b2 B.abc<0 C.b+c>3a D.a<b2.計算tan30°的值等于()A.3B.33C.333.如圖,熱氣球的探測器顯示,從熱氣球A看一棟樓頂部B的仰角為30°,看這棟樓底部C的俯角為60°,熱氣球A與樓的水平距離為120米,這棟樓的高度BC為()A.160米 B.(60+160) C.160米 D.360米4.在同一坐標系中,反比例函數(shù)y=與二次函數(shù)y=kx2+k(k≠0)的圖象可能為()A. B.C. D.5.下面調查中,適合采用全面調查的是()A.對南寧市市民進行“南寧地鐵1號線線路”B.對你安寧市食品安全合格情況的調查C.對南寧市電視臺《新聞在線》收視率的調查D.對你所在的班級同學的身高情況的調查6.小宇媽媽上午在某水果超市買了16.5元錢的葡萄,晚上散步經過該水果超市時,發(fā)現(xiàn)同一批葡萄的價格降低了25%,小宇媽媽又買了16.5元錢的葡萄,結果恰好比早上多了0.5千克.若設早上葡萄的價格是x元/千克,則可列方程()A. B.C. D.7.下列計算,正確的是()A.a2?a2=2a2 B.a2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+18.如圖,在五邊形ABCDE中,∠A+∠B+∠E=300°,DP,CP分別平分∠EDC、∠BCD,則∠P的度數(shù)是()A.60° B.65° C.55° D.50°9.函數(shù)y=ax2+1與(a≠0)在同一平面直角坐標系中的圖象可能是()A. B. C. D.10.如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E,F(xiàn)分別是AC,BC的中點,直線EF與⊙O交于G,H兩點,若⊙O的半徑為6,則GE+FH的最大值為()A.6 B.9 C.10 D.12二、填空題(本大題共6個小題,每小題3分,共18分)11.正六邊形的每個內角等于______________°.12.如圖,在△ABC中,DM垂直平分AC,交BC于點D,連接AD,若∠C=28°,AB=BD,則∠B的度數(shù)為_____度.13.已知扇形的弧長為,圓心角為45°,則扇形半徑為_____.14.如圖,隨機閉合開關,,中的兩個,能讓兩盞燈泡和同時發(fā)光的概率為___________.15.如圖,在中,CM平分交AB于點M,過點M作交AC于點N,且MN平分,若,則BC的長為______.16.PA、PB分別切⊙O于點A、B,∠PAB=60°,點C在⊙O上,則∠ACB的度數(shù)為_____.三、解答題(共8題,共72分)17.(8分)如圖,在中,,以邊為直徑作⊙交邊于點,過點作于點,、的延長線交于點.求證:是⊙的切線;若,且,求⊙的半徑與線段的長.18.(8分)某企業(yè)信息部進行市場調研發(fā)現(xiàn):信息一:如果單獨投資A種產品,所獲利潤yA(萬元)與投資金額x(萬元)之間存在某種關系的部分對應值如下表:x(萬元)122.535yA(萬元)0.40.811.22信息二:如果單獨投資B種產品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數(shù)關系:yB=ax2+bx,且投資2萬元時獲利潤2.4萬元,當投資4萬元時,可獲利潤3.2萬元.(1)求出yB與x的函數(shù)關系式;(2)從所學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)中確定哪種函數(shù)能表示yA與x之間的關系,并求出yA與x的函數(shù)關系式;(3)如果企業(yè)同時對A、B兩種產品共投資15萬元,請設計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?19.(8分)如圖,在平面直角坐標系中,直線y=x+4與x軸、y軸分別交于A、B兩點,拋物線y=-x2+bx+c經過A、B兩點,并與x軸交于另一點C(點C點A的右側),點P是拋物線上一動點.(1)求拋物線的解析式及點C的坐標;(2)若點P在第二象限內,過點P作PD⊥軸于D,交AB于點E.當點P運動到什么位置時,線段PE最長?此時PE等于多少?(3)如果平行于x軸的動直線l與拋物線交于點Q,與直線AB交于點N,點M為OA的中點,那么是否存在這樣的直線l,使得△MON是等腰三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.20.(8分)關于x的一元二次方程有兩個實數(shù)根,則m的取值范圍是()A.m≤1 B.m<1 C.﹣3≤m≤1 D.﹣3<m<121.(8分)計算:﹣22﹣+|1﹣4sin60°|22.(10分)先化簡,再求值:,其中23.(12分)如圖1,在正方形ABCD中,E是邊BC的中點,F(xiàn)是CD上一點,已知∠AEF=90°.(1)求證:;(2)平行四邊形ABCD中,E是邊BC上一點,F(xiàn)是邊CD上一點,∠AFE=∠ADC,∠AEF=90°.①如圖2,若∠AFE=45°,求的值;②如圖3,若AB=BC,EC=3CF,直接寫出cos∠AFE的值.24.已知關于x的方程(a﹣1)x2+2x+a﹣1=1.若該方程有一根為2,求a的值及方程的另一根;當a為何值時,方程的根僅有唯一的值?求出此時a的值及方程的根.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】

根據(jù)二次函數(shù)的圖象與性質逐一判斷即可求出答案.【題目詳解】由圖象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故A正確;∵拋物線開口向上,∴a<0,∵拋物線與y軸的負半軸,∴c<0,∵拋物線對稱軸為x=<0,∴b<0,∴abc<0,故B正確;∵當x=1時,y=a+b+c>0,∵4a<0,∴a+b+c>4a,∴b+c>3a,故C正確;∵當x=﹣1時,y=a﹣b+c>0,∴a﹣b+c>c,∴a﹣b>0,∴a>b,故D錯誤;故選D.考點:本題主要考查圖象與二次函數(shù)系數(shù)之間的關系,會利用對稱軸的范圍求2a與b的關系,以及二次函數(shù)與方程、不等式之間的轉換,根的判別式的熟練運用.2、C【解題分析】tan30°=333、C【解題分析】

過點A作AD⊥BC于點D.根據(jù)三角函數(shù)關系求出BD、CD的長,進而可求出BC的長.【題目詳解】如圖所示,過點A作AD⊥BC于點D.在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD?tan30°=120×=m;在Rt△ADC中,∠DAC=60°,CD=AD?tan60°=120×=m.∴BC=BD+DC=m.故選C.【題目點撥】本題主要考查三角函數(shù),解答本題的關鍵是熟練掌握三角函數(shù)的有關知識,并牢記特殊角的三角函數(shù)值.4、D【解題分析】

根據(jù)k>0,k<0,結合兩個函數(shù)的圖象及其性質分類討論.【題目詳解】分兩種情況討論:①當k<0時,反比例函數(shù)y=,在二、四象限,而二次函數(shù)y=kx2+k開口向上下與y軸交點在原點下方,D符合;②當k>0時,反比例函數(shù)y=,在一、三象限,而二次函數(shù)y=kx2+k開口向上,與y軸交點在原點上方,都不符.分析可得:它們在同一直角坐標系中的圖象大致是D.故選D.【題目點撥】本題主要考查二次函數(shù)、反比例函數(shù)的圖象特點.5、D【解題分析】

根據(jù)普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似解答.【題目詳解】A、對南寧市市民進行“南寧地鐵1號線線路”適宜采用抽樣調查方式;B、對你安寧市食品安全合格情況的調查適宜采用抽樣調查方式;C、對南寧市電視臺《新聞在線》收視率的調查適宜采用抽樣調查方式;D、對你所在的班級同學的身高情況的調查適宜采用普查方式;故選D.【題目點撥】本題考查的是抽樣調查和全面調查的區(qū)別,選擇普查還是抽樣調查要根據(jù)所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查往往選用普查.6、B【解題分析】分析:根據(jù)數(shù)量=,可知第一次買了千克,第二次買了,根據(jù)第二次恰好比第一次多買了0.5千克列方程即可.詳解:設早上葡萄的價格是x元/千克,由題意得,.故選B.點睛:本題考查了分式方程的實際應用,解題的關鍵是讀懂題意,找出列方程所用到的等量關系.7、C【解題分析】

解:A.故錯誤;B.故錯誤;C.正確;D.故選C.【題目點撥】本題考查合并同類項,同底數(shù)冪相乘;冪的乘方,以及完全平方公式的計算,掌握運算法則正確計算是解題關鍵.8、A【解題分析】試題分析:根據(jù)五邊形的內角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度數(shù),再根據(jù)角平分線的定義可得∠PDC與∠PCD的角度和,進一步求得∠P的度數(shù).解:∵五邊形的內角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分線在五邊形內相交于點O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故選A.考點:多邊形內角與外角;三角形內角和定理.9、B【解題分析】試題分析:分a>0和a<0兩種情況討論:當a>0時,y=ax2+1開口向上,頂點坐標為(0,1);位于第一、三象限,沒有選項圖象符合;當a<0時,y=ax2+1開口向下,頂點坐標為(0,1);位于第二、四象限,B選項圖象符合.故選B.考點:1.二次函數(shù)和反比例函數(shù)的圖象和性質;2.分類思想的應用.10、B【解題分析】

首先連接OA、OB,根據(jù)圓周角定理,求出∠AOB=2∠ACB=60°,進而判斷出△AOB為等邊三角形;然后根據(jù)⊙O的半徑為6,可得AB=OA=OB=6,再根據(jù)三角形的中位線定理,求出EF的長度;最后判斷出當弦GH是圓的直徑時,它的值最大,進而求出GE+FH的最大值是多少即可.【題目詳解】解:如圖,連接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB為等邊三角形,∵⊙O的半徑為6,∴AB=OA=OB=6,∵點E,F(xiàn)分別是AC、BC的中點,∴EF=AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵當弦GH是圓的直徑時,它的最大值為:6×2=12,∴GE+FH的最大值為:12﹣3=1.故選:B.【題目點撥】本題結合動點考查了圓周角定理,三角形中位線定理,有一定難度.確定GH的位置是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、120【解題分析】試題解析:六邊形的內角和為:(6-2)×180°=720°,∴正六邊形的每個內角為:=120°.考點:多邊形的內角與外角.12、1【解題分析】

根據(jù)線段垂直平分線上的點到兩端點的距離相等可得AD=CD,等邊對等角可得∠DAC=∠C,三角形的一個外角等于與它不相鄰的兩個內角的和求出∠ADB=∠C+∠DAC,再次根據(jù)等邊對等角可得可得∠ADB=∠BAD,然后利用三角形的內角和等于180°列式計算即可得解.【題目詳解】∵DM垂直平分AC,∴AD=CD,∴∠DAC=∠C=28°,∴∠ADB=∠C+∠DAC=28°+28°=56°,∵AB=BD,∴∠ADB=∠BAD=56°,在△ABD中,∠B=180°?∠BAD?∠ADB=180°?56°?56°=1°.故答案為1.【題目點撥】本題考查了等腰三角形的性質,線段垂直平分線上的點到兩端點的距離相等的性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,三角形的內角和定理,熟記各性質與定理是解題的關鍵.13、1【解題分析】

根據(jù)弧長公式l=代入求解即可.【題目詳解】解:∵,∴.故答案為1.【題目點撥】本題考查了弧長的計算,解答本題的關鍵是掌握弧長公式:l=.14、【解題分析】

首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與能讓兩盞燈泡同時發(fā)光的情況,再利用概率公式求解即可求得答案.【題目詳解】解:畫樹狀圖得:由樹狀圖得:共有6種結果,且每種結果的可能性相同,其中能讓兩盞燈泡同時發(fā)光的是閉合開關為:K1、K3與K3、K1共兩種結果,∴能讓兩盞燈泡同時發(fā)光的概率,故答案為:.【題目點撥】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.15、1【解題分析】

根據(jù)題意,可以求得∠B的度數(shù),然后根據(jù)解直角三角形的知識可以求得NC的長,從而可以求得BC的長.【題目詳解】∵在Rt△ABC中,CM平分∠ACB交AB于點M,過點M作MN∥BC交AC于點N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=1,故答案為1.【題目點撥】本題考查含30°角的直角三角形、平行線的性質、等腰三角形的判定與性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.16、60°或120°.【解題分析】

連接OA、OB,根據(jù)切線的性質得出∠OAP的度數(shù),∠OBP的度數(shù);再根據(jù)四邊形的內角和是360°,求出∠AOB的度數(shù),有圓周角定理或圓內接四邊形的性質,求出∠ACB的度數(shù)即可.【題目詳解】解:連接OA、OB.∵PA,PB分別切⊙O于點A,B,∴OA⊥PA,OB⊥PB;∴∠PAO=∠PBO=90°;又∵∠APB=60°,∴在四邊形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,∴即當C在D處時,∠ACB=60°.在四邊形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.于是∠ACB的度數(shù)為60°或120°,故答案為60°或120°.【題目點撥】本題考查的是切線的性質定理,圓內接四邊形的性質,是一道基礎題.三、解答題(共8題,共72分)17、(1)證明參見解析;(2)半徑長為,=.【解題分析】

(1)已知點D在圓上,要連半徑證垂直,連結,則,所以,∵,∴.∴,∴∥.由得出,于是得出結論;(2)由得到,設,則.,,,由,解得值,進而求出圓的半徑及AE長.【題目詳解】解:(1)已知點D在圓上,要連半徑證垂直,如圖2所示,連結,∵,∴.∵,∴.∴,∴∥.∵,∴.∴是⊙的切線;(2)在和中,∵,∴.設,則.∴,.∵,∴.∴,解得=,則3x=,AE=6×-=6,∴⊙的半徑長為,=.【題目點撥】1.圓的切線的判定;2.銳角三角函數(shù)的應用.18、(1)yB=-0.2x2+1.6x(2)一次函數(shù),yA=0.4x(3)該企業(yè)投資A產品12萬元,投資B產品3萬元,可獲得最大利潤7.8萬元【解題分析】

(1)用待定系數(shù)法將坐標(2,2.4)(4,3.2)代入函數(shù)關系式y(tǒng)B=ax2+bx求解即可;(2)根據(jù)表格中對應的關系可以確定為一次函數(shù),通過待定系數(shù)法求得函數(shù)表達式;(3)根據(jù)等量關系“總利潤=投資A產品所獲利潤+投資B產品所獲利潤”列出函數(shù)關系式求得最大值【題目詳解】解:(1)yB=-0.2x2+1.6x,(2)一次函數(shù),yA=0.4x,(3)設投資B產品x萬元,投資A產品(15-x)萬元,投資兩種產品共獲利W萬元,則W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,∴當x=3時,W最大值=7.8,答:該企業(yè)投資A產品12萬元,投資B產品3萬元,可獲得最大利潤7.8萬元.19、(1)y=-x2-2x+1,C(1,0)(2)當t=-2時,線段PE的長度有最大值1,此時P(-2,6)(2)存在這樣的直線l,使得△MON為等腰三角形.所求Q點的坐標為(,2)或(,2)或(,2)或(,2)【解題分析】解:(1)∵直線y=x+1與x軸、y軸分別交于A、B兩點,∴A(-1,0),B(0,1).∵拋物線y=-x2+bx+c經過A、B兩點,∴,解得.∴拋物線解析式為y=-x2-2x+1.令y=0,得-x2-2x+1=0,解得x1=-1,x2=1,∴C(1,0).(2)如圖1,設D(t,0).∵OA=OB,∴∠BAO=15°.∴E(t,t+1),P(t,-t2-2t+1).PE=yP-yE=-t2-2t+1-t-1=-t2-1t=-(t+2)2+1.∴當t=-2時,線段PE的長度有最大值1,此時P(-2,6).(2)存在.如圖2,過N點作NH⊥x軸于點H.設OH=m(m>0),∵OA=OB,∴∠BAO=15°.∴NH=AH=1-m,∴yQ=1-m.又M為OA中點,∴MH=2-m.當△MON為等腰三角形時:①若MN=ON,則H為底邊OM的中點,∴m=1,∴yQ=1-m=2.由-xQ2-2xQ+1=2,解得.∴點Q坐標為(,2)或(,2).②若MN=OM=2,則在Rt△MNH中,根據(jù)勾股定理得:MN2=NH2+MH2,即22=(1-m)2+(2-m)2,化簡得m2-6m+8=0,解得:m1=2,m2=1(不合題意,舍去).∴yQ=2,由-xQ2-2xQ+1=2,解得.∴點Q坐標為(,2)或(,2).③若ON=OM=2,則在Rt△NOH中,根據(jù)勾股定理得:ON2=NH2+OH2,即22=(1-m)2+m2,化簡得m2-1m+6=0,∵△=-8<0,∴此時不存在這樣的直線l,使得△MON為等腰三角形.綜上所述,存在這樣的直線l,使得△MON為等腰三角形.所求Q點的坐標為(,2)或(,2)或(,2)或(,2).(1)首先求得A、B點的坐標,然后利用待定系數(shù)法求拋物線的解析式,并求出拋物線與x軸另一交點C的坐標.(2)求出線段PE長度的表達式,設D點橫坐標為t,則可以將PE表示為關于t的二次函數(shù),利用二次函數(shù)求極值的方法求出PE長度的最大值.(2)根據(jù)等腰三角形的性質和勾股定理,將直線l的存在性問題轉化為一元二次方程問題,通過一元二次方程的判別式可知直線l是否存在,并求出相應Q點的坐標.“△MON是等腰三角形”,其中包含三種情況:MN=ON,MN=OM,ON=OM,逐一討論求解.20、C【解題分析】

利用二次根式有意義的條件和判別式的意義得到,然后解不等式組即可.【題目詳解】根據(jù)題意得,解得-3≤m≤1.故選C.【題目點撥】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:當△>0時,方程有兩個不相等的兩個實數(shù)根;當△=0時,方程有兩個相等的兩個實數(shù)根;當△<0時,方程無實數(shù)根.21、-1【解題分析】

直接利用二次根式的性質以及特殊角的三角函數(shù)值、絕對值的性質分別化簡得出答案.【題目詳解】解:原式===﹣1.【題目點撥】此題主要考查了實數(shù)運算以及特殊角的三角函數(shù)值,正確化簡各數(shù)是解題關鍵.22、;.【解題分析】

先對小括號部分通分,同時把除化為乘,再根據(jù)分式的基本性質約分,最后代入求值.【題目詳解】解:原式==把代入得:原式=.【題目點撥】本題考查分式的化簡求值,計算題是中考必考題,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論