版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023北京懷柔高一(上)期末數(shù)學(xué)2023.1注意事項:1150120分鐘.2.試題所有答案必須書寫在答題卡的對應(yīng)位置.在試卷上作答無效.3.考試結(jié)束后,考生應(yīng)及時上傳答案.第一部分(選擇題共分)10440目要求的一項.A=2,3,4,5,6,集合=?2,3B1.已知集合,則圖中陰影部分表示集合為()A.?2,3,4,5,6B.+2,33)6D.C.2.若命題Px(0,),x1”,則P為(x,0x1(x(+),x1A.C.,B.D.x+(),x1x(+),x1()上單調(diào)遞增的是()3.下列函數(shù)既是奇函數(shù)又在區(qū)間x1()=(+)f(x)=x3f(x)=x2+()=A.fxfxx11B.C.D.224.,b,cRa,且ab,則下列不等式一定成立的是()1a1baba?cb?cA.B.C.D.acbc22c=log0.25c5.設(shè)a=2,b=0.23,A.abcab,則,,的大小關(guān)系是()B.bcaC.cabD.cba()是定義在R上的偶函數(shù),且當(dāng)fx時,()=0,則(?)的值是()fxlog2xf46.已知函數(shù)x1212A.2B.?2C.?D.7.某直播間從參與購物的人群中隨機選出200人,并將這人按年齡分組得到的頻率分布直方圖如圖所示,則在這人中年齡在35)的人數(shù)及直方圖中值是()naA.n35,=a=0.032B.n=35,a=0.32C.n=30,a=n=30,a=D.R,p:方程x2+1=0有實數(shù)解,:+q2a3,則pq8.a是的()A.充分而不必要條件C.充分必要條件B.必要而不充分條件D.既不充分不必要條件=?H+H表示溶液中氫離子的濃+PH9.溶液酸堿度是通過計量的.的計算公式為+=5109H摩爾0.00120.301)A.8.699B.8.301C.7.699D.6.602()?()f1f2(?)()對任意(?,?20成fx2fx1,21210.12?f0=0立,且(),2fx()的解集是(0,則)(?)()(?2)(?),4(?0)D.A.B.C.第二部分(非選擇題共分)二、填空題:共5道小題,每小題5分,共分.()=(?)的定義域為_________.fxx1函數(shù)212.某學(xué)校高一有280名學(xué)生,高二有200名學(xué)生,高三有120名學(xué)生,用分層抽樣的方法從中抽取60名學(xué)生對課后輔導(dǎo)的滿意度進行調(diào)查,則從高一學(xué)生中應(yīng)抽取______人.4x+1?,則x+1的最小值為___________.13.x()=fx3x,則下列命題正確的有______14.已知函數(shù)x2R,都有()=()+()成立;fxxfxfx①對于任意x1,1212()?()yf1f2xRxx=0成立②對于任意x1,③對于任意x1,,且,且,都有,都有212x?12()+()x+x12fxfxxR2xx12f成立;1222(+)=(?)成立.fxafaxax④存在實數(shù),使得對于任意實數(shù),都有?+xa()=fx,當(dāng)a=1時,則(?=ff;若函數(shù)()=()?有g(shù)xfxa______215.已知函數(shù)(?)2x2,xaa______三個零點,則實數(shù)的取值范圍是.三、解答題:共6道小題,共85分.解答應(yīng)寫出文字說明,演算步驟或證明過程.?x?2B=xxa.A=xx216.已知集合,(1a1時,求(2AB=,求實數(shù)的取值范圍.17.為了慶祝神舟十四號成功返航,學(xué)校開展“航天知識”競賽活動,甲乙兩個班級的代表隊同時回答一=,AB,AB;a32道有關(guān)航天知識的問題,甲隊答對此題的概率是,乙隊答對此題的概率是,假設(shè)每隊答題正確與否是43相互獨立的.(1)求甲乙兩隊都答對此題的概率;(2)求甲乙兩隊至少有一隊答對此題的概率.fx2x2bxcb,cR()=++()18.已知函數(shù)12(1)若不等式f(x)0?,()的最小值;fx的解集為f?2=f4(2()()且f1()=?,求方程()=兩實根之差絕對值.1fx0axf)=?1()=19.已知函數(shù)fxaR,,若x?(1值;a(2)判斷函數(shù)()的奇偶性,并用定義給出證明;fx(3)用定義證明()在區(qū)間()上單調(diào)遞增.fx20.“航天知識”中各隨機抽取5名學(xué)生的測試成績,這名學(xué)生的測試成績(百分制)的莖葉圖如圖所示.S2甲S2分別為甲、乙兩班抽取的成績的方乙(1x,x分別為甲、乙兩班抽取的成績的平均分,,甲乙差,則x______x,S2______S2乙“>”“<”)或甲乙甲(2)若成績在85分(含85分)以上優(yōu)秀,()從甲班所抽取的5名學(xué)生中任取2名學(xué)生,則恰有1人成績優(yōu)秀的概率;(ⅱ成績優(yōu)秀學(xué)生中各取1人,則甲班選取的學(xué)生成績不低于乙班選取的學(xué)生成績的概率.a(chǎn)2x+b13()=f)=是定義域為R的奇函數(shù),且21.已知函數(shù)fx(1)求實數(shù)和b2+1x()在fxa的值;并判斷R(+)++(?m1x2(2)若關(guān)于的不等式xffm10恒成立,求實數(shù)的取值范圍;mx23(x+2)f(x)n成立,求實數(shù)的取值范圍.1(3)對于任意的11,3,存在n2參考答案第一部分(選擇題共分)10440目要求的一項.1.【答案】C【解析】【分析】題中陰影部分表示的集合為AB,求解即可.A=2,3,4,5,6,集合B=?3,【詳解】因為集合而題中陰影部分表示的集合為AB,AB=3.則故選:C.2.【答案】D【解析】【分析】利用存在量詞命題的否定,直接寫出P作答.【詳解】命題Px(0,+),x1”是存在量詞命題,其否定是全稱量詞命題,x(+)所以P為:x1.,故選:D3.【答案】C【解析】【分析】利用奇函數(shù)的定義、由解析式直接判斷單調(diào)性,逐項分析判斷作答.1()=x【詳解】對于A,函數(shù)fx()定義域為R,且在R上單調(diào)遞減,A不是;2fx=x+)定義域為(?+)對于B,函數(shù)()(,定義域關(guān)于數(shù)0不對稱,即()=(+)不fxx122是奇函數(shù),B不是;對于C,函數(shù)f(x)=x3定義域為R,且(?)=(?x)3=?fxf(x),即函數(shù)f(x)=x3是奇函數(shù),而函數(shù)f(x)=x3在R上單調(diào)遞增,因此C是;對于D,函數(shù)f(x)=x2+1定義域為R,而f(?)=?+1=f(x)(x)x2f(x)=x2+1不是奇函,即函數(shù)數(shù),D不是.故選:C4.【答案】B【解析】【分析】根據(jù)給定條件,舉例說明判斷A,D;利用不等式的性質(zhì)判斷B作答.【詳解】,b,且ab,,cRa1a121ba=b=?2,則有|a=12|b|=1?=取,,選項AC都不正確;由不等式性質(zhì)知,不等式a?cb?c一定成立,B正確;取c0,則ac2=0=bc2D不正確.故選:B5.【答案】D【解析】【分析】根據(jù)給定條件,利用指數(shù)函數(shù)、對數(shù)函數(shù)性質(zhì),再結(jié)合“媒介”數(shù)比較大小作答.=1,即0b1,c=5100.20.2=,0.2【詳解】a20.3=20=1,00.230因此c0b1a,即D正確.故選:D6.【答案】A【解析】【分析】根據(jù)給定條件,利用偶函數(shù)的性質(zhì)結(jié)合對數(shù)運算作答.【詳解】因為函數(shù)()是定義在R上的偶函數(shù),且當(dāng)x0時,()=,fxfxlog2xf(4)=f(4)=log24=2所以.故選:A7.【答案】C【解析】【分析】求出頻率直方圖中年齡在35)的頻率,根據(jù)頻率即可求出人數(shù)根據(jù)頻率分布直方圖中,小矩形面積和為列出等式解出即可a.【詳解】解由圖知,年齡在35)的小矩形的面積為:0.015=,即年齡在35)的頻率為,所以年齡在35)的人數(shù)n=0.15=,由頻率分布直方圖的小矩形面積和為1可得:0.0110+0.01510+a10+0.0310+0.0110=1,解得:a=.故選8.【答案】B【解析】【分析】求出命題pa的取值范圍,再利用充分條件、必要條件的定義判斷作答.【詳解】因為方程x或a2,2++1=0有實數(shù)解,則有Δ=a2?40,解得a2或a2,因此:a2p)(2,顯然,即有命題q成立,命題p必成立,而命題p成立,命題q未必成立,pq所以是的必要而不充分條件.故選:B9.【答案】B【解析】【分析】直接利用所給公式計算求解即可.【詳解】由題意得蘇打水的為=?H+pH=?=?10?9)+9)5lg10=?+92=?(lg10?2)+9=2+80.301+8=8.301.故選:B10.D【解析】【分析】由已知條件得到()的圖象關(guān)于x=2對稱,從而可知fx()在(??上為增函數(shù),fx,2在(?+)上為減函數(shù),且f(?4)=0,再畫出折線圖表示出函數(shù)f(x)的單調(diào)性,即可得到答案.【詳解】因為f(x?2)是偶函數(shù),即(?)的圖象關(guān)于對稱fx2y.所以()的圖象關(guān)于x=2對稱.fx()?()f1f2因為函數(shù)()對任意,2(??,且xx,都有0成立,fxx,x1212?12()(??,2上為增函數(shù).fx所以在()fxx=2對稱,()=f00,又因為的圖象關(guān)于所以()在(?+)為減函數(shù),且(?)=0.fxf4用折線圖表示函數(shù)()的單調(diào)性,如圖所示:fx由圖知:f(x)0?4x0.故選:D.第二部分(非選擇題共分)二、填空題:共5道小題,每小題5分,共分.(+)【答案】【解析】【分析】根據(jù)對數(shù)函數(shù)的真數(shù)大于,列出不等式求解集即可.詳解】對數(shù)函數(shù)(x)=log2(x1)中,x﹣10,解得>;∴(x)的定義域為(1+∞故答案(,.【點睛】本題考查了求對數(shù)函數(shù)的定義域問題,是基礎(chǔ)題.12.【答案】28【解析】【分析】由分層抽樣的定義計算即可.280【詳解】由分層抽樣的定義,高一學(xué)生中應(yīng)抽取人數(shù)為6028.280故答案為:2813.【答案】3【解析】4x+14x+1【分析】由x1可得x+10,將x+整理為x+1+?1,再利用基本不等式即可求解.【詳解】因為x1,所以x+10,4x+14x+14x+1x+=x+1+?12(x+?1=3,所以4x+1x+1=,即x=1時取等號,當(dāng)且僅當(dāng)4x+1x+所以的最小值為3,故答案為:3【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.14.【答案】②③【解析】利用基本不等式易證③成立.)=3xx31+32=f(x+x),.【詳解】12①不正確12f(x)=3x單調(diào)遞增,②正確.()+()+fxf231+32122x+x12=3132=3=f222()+()x+x12fxfx,12f,所以③正確.22若對于任意實數(shù),都有(+)=(?)成立,則()關(guān)于=對稱,顯然④不正確xfxafaxfxxa.故答案為:②③5?115.【答案】【解析】①.1②.2?x+x1a=1得此時f(x)=,根據(jù)解析式先求f(2)得值,再求解ff(?2的值【分析】根據(jù)(?)2x2,x1gx=fx?afx有三個零點,即即可;函數(shù)()()()=有三個根,結(jié)合函數(shù)解析式初步判斷可得a0a2,畫出函數(shù)圖象,結(jié)合圖象分析列不等式即可得實數(shù)a的取值范圍.?x+x1a=1時,f(x)=,所以f(?2)=?(?2)+1=3,則【詳解】解:當(dāng)(?)2x2,x1(?=()=(?)2=1;ff2f332?+xagx=fx?afx有三個零點,即若函數(shù)()()()=有三個根,又()=afx,(?)2x2,xa()=(?)2=a在a,+)f(x)=?ax+1=a在(?,a)上有一個2,則fxx2上有兩個根,所以0a根,如下圖得此時()的大致圖象:fx2?a2+1a(a?2)51?則根據(jù)f(x)=aa1,則實數(shù)的取值范圍是a有三個根可得:,解得0a225?1.25?1故答案為:1;.2【點睛】關(guān)鍵點睛:本題考查分段函數(shù)求值與分段函數(shù)零點問題,屬于壓軸題.解決本題中零點問題的關(guān)?+xafx=鍵是分析分段函數(shù)兩段函數(shù)性質(zhì),由于(),是一次函數(shù)與二次函數(shù)分段問題,要求(?)2x2,xa()=有三個根,結(jié)合二次函數(shù)fx在+)上的性質(zhì)可初步判斷a,a=(?)22,避免對進行符ayx20a號討論,即可得出分段函數(shù)的大致圖象,結(jié)合圖象列不等式可求得參數(shù)范圍.三、解答題:共6道小題,共85分.解答應(yīng)寫出文字說明,演算步驟或證明過程.x,A1x,Ax?;16.)(2)a2【解析】)化簡集合,把a=1代入,再利用補集、交集、并集的定義求解作答.(2)利用(1)中信息,結(jié)合給定的交集結(jié)果,列式求解作答.【小問1詳解】??0得:1x2解一元二次不等式x2x2A={x|?1x,即,a=1時,B{x|x=,當(dāng)x,A1x,Ax?.所以【小問2詳解】由AB=得:a2,A={x|?1xABB=xxax},由得:,而,于是得Ra2.所以實數(shù)的取值范圍a1217.)(2)【解析】)設(shè)甲、乙隊答對此題分別為事件概率公式,即可求甲乙兩隊都答對此題的概率;323()=PA()=,PB,B,則,結(jié)合相互獨立事件同時發(fā)4生(2)依據(jù)題意,結(jié)合對立事件與相互獨立事件同時發(fā)生的概率公式,即可求得甲乙兩隊至少有一隊答對此題的概率.【小問1詳解】3423()=PA()=,PB,B解:設(shè)甲、乙隊答對此題分別為事件,則,記事件M“甲乙兩隊都答對此題”,由于每隊答題正確與否是相互獨立的,=3212()=()()==12PMPAPB所以,故甲乙兩隊都答對此題的概率為;43【小問2詳解】解:記事件N=“甲乙兩隊至少有一隊答對此題”,由于每隊答題正確與否是相互獨立的,32114312()()()PN=1?PN=1?PAPB=1?1?1?故()=.故甲乙兩隊至少有一隊答對此題的概率為.918.)?;8(2)2.【解析】()fx)根據(jù)給定一元二次不等式解集,求出函數(shù)的解析式,再求出二次函數(shù)最小值作答.(2)根據(jù)給定條件,求出函數(shù)()的解析式,再求出方程()=fx0的二根即可作答.fx【小問1詳解】12fx0不等式()?,,即2x2bxc0的解集為++,的二根,即有9121b1c+2=?2=,解得b=?,且c2=,22x2+bx+c=0于是得是方程,22225598f(x)=2x2?5x+2=2(x?)2?x=f(x)=?因此,當(dāng)且僅當(dāng)時,,48498所以函數(shù)()的最小值是.fx?【小問2詳解】?2(2)2?b+c=242+b+cf?2=f4()()且()=?,則有f11因,2+b+c=?1解得b=?c=1,22因此f(x)2x()=,即4x+1,方程fx的二根為,=2?02x2?4x+1=01=1?,2=1+22()=fx0?=兩實根之差的絕對值為|12|2.所以程19.)a=2;(2)奇函數(shù),理由見解析;(3)證明見解析.【解析】)將給定自變量及對應(yīng)函數(shù)值代入計算即可.(2)利用奇偶函數(shù)的定義直接判斷作答.(3)利用函數(shù)單調(diào)性定義,按步驟推理作答.【小問1詳解】af)=?1,則有1?a=?1,解得a=2,中,因為()=?函數(shù)fxxx所以a=2.【小問2詳解】由()知,函數(shù)2f(x)=x?是奇函數(shù),x222f(x)=x?定義域為(?,0)f(?x)=?x?=?(x?)=?f(x)函數(shù),,?xxx2f(x)=x?.所以函數(shù)是奇函數(shù)x【小問3詳解】222x,x+)xx?=???=?2+f(1)f(2)1(2)(1),,且,121212xx1201xxxxx1?,0,即有f())0(?fxf(x)f(x)因為,則,因此,22121212所以()在區(qū)間()上單調(diào)遞增.fx20.)>;358(2)ⅱ).5【解析】)利用給定的莖葉圖,結(jié)合平均數(shù)、方差的意義計算判斷作答.(2?。ǎ├昧信e法,結(jié)合古典概率求解作答.【小問1詳解】77+78+83+86+9679+86+88+90+92x=甲=84x==87,由莖葉圖知,,乙55所以x<x;甲乙1S2甲=[(77?84)22+(78?84)22+?84)2+?84)2+(96?84)2]=46.8,]=2051S2乙=[(79?87)+?87)+?87)2+(90?87)2+(92?87)2,5S2>2.所以甲【小問2詳解】()抽取的兩名學(xué)生成績分別為x,y(x,y),把他們記為,從甲班所抽取的5名學(xué)生中任取2名學(xué)生,他們的成績組成的不同結(jié)果:()()()()()()()()()(),共個,77,78,77,83,77,86,77,96,78,83,78,86,96,86,96,96恰有1人成績優(yōu)秀的事件A有:(77,86),(77,96),86),96),86),96),共6635P()==.所以恰有1人成績優(yōu)秀的概率10(ⅱ)依題意,甲班成績優(yōu)秀學(xué)生有2人,成績分別為96,乙班成績優(yōu)秀學(xué)生有4人,成績分別為92,從甲、乙兩班所抽取的成績優(yōu)秀學(xué)生中各取1人,按甲班的在前、乙班的在后寫在括號內(nèi),不同結(jié)果有:()()()(),共86,86,86,88,90,92,86),90),92)8甲班選取的學(xué)生成績不低于乙班選取的學(xué)生成績的事件B有:86),86),90),92),共558P(B)=.所以甲班選取的學(xué)生成績不低于乙班選取的學(xué)生成績的概率a=1b=?1,()在R上單調(diào)遞增fx21.)233,+(2)(3)())0,1【解析】13()=f1()在fx)根據(jù)奇函數(shù)和即可求出和的值,有定義法即可得出abR上單調(diào)性.()根據(jù)奇函數(shù)和單調(diào)遞增求出(m+1x)2++m?10,分類討論x2前的系數(shù)是否為,即可求出實m數(shù)的取值范圍gx=x(3)根據(jù)函數(shù)的單調(diào)遞增,得出等價條件,分類討論()n的單調(diào)性即可求出實數(shù)的取值范圍.n【小問1詳解】由題意a2x+b13()=在fxf)=中,函數(shù)是定義域為R的奇函數(shù),2x+1a+ba+bf(0)===0a=120+1a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度年福建省高校教師資格證之高等教育心理學(xué)通關(guān)題庫(附帶答案)
- 2024年度山西省高校教師資格證之高等教育法規(guī)題庫練習(xí)試卷A卷附答案
- 2024年度年福建省高校教師資格證之高等教育學(xué)能力測試試卷B卷附答案
- 2024年企業(yè)金融項目投資申請報告代可行性研究報告
- 2024年防霧涂料項目投資申請報告代可行性研究報告
- 山東省臨沂一中2024-2025學(xué)年高三11月測試語文試題含答案
- 第六章 社區(qū)營養(yǎng)管理和營養(yǎng)干預(yù)課件
- 五年級數(shù)學(xué)(小數(shù)除法)計算題專項練習(xí)及答案
- 2024年期房屋建筑施工協(xié)議范例大全
- 2024電力供應(yīng)與消費合規(guī)協(xié)議樣式
- 管桁架施工方案
- 全國高考物理高考題說題比賽一等獎?wù)n件物理說題李煥景
- 華為MA5800配置及調(diào)試手冊
- 汽車坡道玻璃雨棚施工方案
- 二輪復(fù)習(xí)微專題湖泊專題
- 2024年德陽發(fā)展控股集團有限公司招聘筆試參考題庫附帶答案詳解
- 餐前檢查表(標(biāo)準(zhǔn)模版)
- 重大風(fēng)險管控方案及措施客運站
- 陜西方言的文化價值與保護策略
- (2024年)剪映入門教程課件
- 2023年12月教師數(shù)字素養(yǎng)測評試題及參考答案
評論
0/150
提交評論