版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆江蘇省句容市二中學(xué)片區(qū)合作共同體達(dá)標(biāo)名校中考數(shù)學(xué)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在半徑為5的⊙O中,弦AB=6,點(diǎn)C是優(yōu)弧上一點(diǎn)(不與A,B重合),則cosC的值為()A. B. C. D.2.關(guān)于x的一元二次方程x2+8x+q=0有兩個(gè)不相等的實(shí)數(shù)根,則q的取值范圍是()A.q<16 B.q>16C.q≤4 D.q≥43.已知,用尺規(guī)作圖的方法在上確定一點(diǎn),使,則符合要求的作圖痕跡是()A. B.C. D.4.二次函數(shù)y=ax2+bx+c的圖象在平面直角坐標(biāo)系中的位置如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y=在同一平面直角坐標(biāo)系中的圖象可能是()A. B. C. D.5.sin60°的值為()A. B. C. D.6.估算的值在(
)A.3和4之間 B.4和5之間 C.5和6之間 D.6和7之間7.一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時(shí)出發(fā),它們離甲地的路程y(km)與客車行駛時(shí)間x(h)間的函數(shù)關(guān)系如圖,下列信息:(1)出租車的速度為100千米/時(shí);(2)客車的速度為60千米/時(shí);(3)兩車相遇時(shí),客車行駛了3.75小時(shí);(4)相遇時(shí),出租車離甲地的路程為225千米.其中正確的個(gè)數(shù)有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)8.在以下四個(gè)圖案中,是軸對稱圖形的是()A. B. C. D.9.在下列交通標(biāo)志中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.10.如圖,在正五邊形ABCDE中,連接BE,則∠ABE的度數(shù)為()A.30° B.36° C.54° D.72°二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.某排水管的截面如圖,已知截面圓半徑OB=10cm,水面寬AB是16cm,則截面水深CD為_____.12.若直角三角形兩邊分別為6和8,則它內(nèi)切圓的半徑為_____.13.高速公路某收費(fèi)站出城方向有編號為的五個(gè)小客車收費(fèi)出口,假定各收費(fèi)出口每20分鐘通過小客車的數(shù)量分別都是不變的.同時(shí)開放其中的某兩個(gè)收費(fèi)出口,這兩個(gè)出口20分鐘一共通過的小客車數(shù)量記錄如下:收費(fèi)出口編號通過小客車數(shù)量(輛)260330300360240在五個(gè)收費(fèi)出口中,每20分鐘通過小客車數(shù)量最多的一個(gè)出口的編號是___________.14.如圖,已知圓錐的母線SA的長為4,底面半徑OA的長為2,則圓錐的側(cè)面積等于.15.已知方程組,則x+y的值為_______.16.如圖,△ABC內(nèi)接于⊙O,DA、DC分別切⊙O于A、C兩點(diǎn),∠ABC=114°,則∠ADC的度數(shù)為_______°.三、解答題(共8題,共72分)17.(8分)甲、乙兩公司各為“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人數(shù)是甲公司人數(shù)的,問甲、乙兩公司人均捐款各多少元?18.(8分)關(guān)于的一元二次方程.求證:方程總有兩個(gè)實(shí)數(shù)根;若方程有一根小于1,求的取值范圍.19.(8分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,作ED⊥EB交AB于點(diǎn)D,⊙O是△BED的外接圓.求證:AC是⊙O的切線;已知⊙O的半徑為2.5,BE=4,求BC,AD的長.20.(8分)如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長線上,AD平分∠CAE交⊙O于點(diǎn)D,且AE⊥CD,垂足為點(diǎn)E.(1)求證:直線CE是⊙O的切線.(2)若BC=3,CD=3,求弦AD的長.21.(8分)如圖,已知等邊△ABC,AB=4,以AB為直徑的半圓與BC邊交于點(diǎn)D,過點(diǎn)D作DE⊥AC,垂足為E,過點(diǎn)E作EF⊥AB,垂足為F,連接FD.(1)求證:DE是⊙O的切線;(2)求EF的長.22.(10分)如圖,已知AC和BD相交于點(diǎn)O,且AB∥DC,OA=OB.求證:OC=OD.23.(12分)如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.(1)求證:ED為⊙O的切線;(2)若⊙O的半徑為3,ED=4,EO的延長線交⊙O于F,連DF、AF,求△ADF的面積.24.如圖,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,已知點(diǎn)A(﹣4,0).求拋物線與直線AC的函數(shù)解析式;若點(diǎn)D(m,n)是拋物線在第二象限的部分上的一動點(diǎn),四邊形OCDA的面積為S,求S關(guān)于m的函數(shù)關(guān)系式;若點(diǎn)E為拋物線上任意一點(diǎn),點(diǎn)F為x軸上任意一點(diǎn),當(dāng)以A、C、E、F為頂點(diǎn)的四邊形是平行四邊形時(shí),請求出滿足條件的所有點(diǎn)E的坐標(biāo).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】解:作直徑AD,連結(jié)BD,如圖.∵AD為直徑,∴∠ABD=90°.在Rt△ABD中,∵AD=10,AB=6,∴BD==8,∴cosD===.∵∠C=∠D,∴cosC=.故選D.點(diǎn)睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.也考查了解直角三角形.2、A【解題分析】∵關(guān)于x的一元二次方程x2+8x+q=0有兩個(gè)不相等的實(shí)數(shù)根,∴△>0,即82-4q>0,∴q<16,故選A.3、D【解題分析】試題分析:D選項(xiàng)中作的是AB的中垂線,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故選D.考點(diǎn):作圖—復(fù)雜作圖.4、C【解題分析】試題分析:∵二次函數(shù)圖象開口方向向下,∴a<0,∵對稱軸為直線>0,∴b>0,∵與y軸的正半軸相交,∴c>0,∴的圖象經(jīng)過第一、二、四象限,反比例函數(shù)圖象在第一三象限,只有C選項(xiàng)圖象符合.故選C.考點(diǎn):1.二次函數(shù)的圖象;2.一次函數(shù)的圖象;3.反比例函數(shù)的圖象.5、B【解題分析】解:sin60°=.故選B.6、C【解題分析】
由可知56,即可解出.【題目詳解】∵∴56,故選C.【題目點(diǎn)撥】此題主要考查了無理數(shù)的估算,掌握無理數(shù)的估算是解題的關(guān)鍵.7、D【解題分析】
根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以判斷各個(gè)小題是否正確,從而可以解答本題.【題目詳解】由圖象可得,出租車的速度為:600÷6=100千米/時(shí),故(1)正確,客車的速度為:600÷10=60千米/時(shí),故(2)正確,兩車相遇時(shí),客車行駛時(shí)間為:600÷(100+60)=3.75(小時(shí)),故(3)正確,相遇時(shí),出租車離甲地的路程為:60×3.75=225千米,故(4)正確,故選D.【題目點(diǎn)撥】本題考查一次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.8、A【解題分析】
根據(jù)軸對稱圖形的概念對各選項(xiàng)分析判斷利用排除法求解.【題目詳解】A、是軸對稱圖形,故本選項(xiàng)正確;
B、不是軸對稱圖形,故本選項(xiàng)錯(cuò)誤;
C、不是軸對稱圖形,故本選項(xiàng)錯(cuò)誤;
D、不是軸對稱圖形,故本選項(xiàng)錯(cuò)誤.
故選:A.【題目點(diǎn)撥】本題考查了軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.9、C【解題分析】
根據(jù)軸對稱圖形和中心對稱圖形的定義進(jìn)行分析即可.【題目詳解】A、不是軸對稱圖形,也不是中心對稱圖形.故此選項(xiàng)錯(cuò)誤;B、不是軸對稱圖形,也不是中心對稱圖形.故此選項(xiàng)錯(cuò)誤;C、是軸對稱圖形,也是中心對稱圖形.故此選項(xiàng)正確;D、是軸對稱圖形,但不是中心對稱圖形.故此選項(xiàng)錯(cuò)誤.故選C.【題目點(diǎn)撥】考點(diǎn):1、中心對稱圖形;2、軸對稱圖形10、B【解題分析】
在等腰三角形△ABE中,求出∠A的度數(shù)即可解決問題.【題目詳解】解:在正五邊形ABCDE中,∠A=×(5-2)×180=108°
又知△ABE是等腰三角形,
∴AB=AE,
∴∠ABE=(180°-108°)=36°.
故選B.【題目點(diǎn)撥】本題主要考查多邊形內(nèi)角與外角的知識點(diǎn),解答本題的關(guān)鍵是求出正五邊形的內(nèi)角,此題基礎(chǔ)題,比較簡單.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、4cm.【解題分析】
由題意知OD⊥AB,交AB于點(diǎn)C,由垂徑定理可得出BC的長,在Rt△OBC中,根據(jù)勾股定理求出OC的長,由CD=OD-OC即可得出結(jié)論.【題目詳解】由題意知OD⊥AB,交AB于點(diǎn)E,∵AB=16cm,∴BC=AB=×16=8cm,在Rt△OBE中,∵OB=10cm,BC=8cm,∴OC=(cm),∴CD=OD-OC=10-6=4(cm)故答案為4cm.【題目點(diǎn)撥】本題考查的是垂徑定理的應(yīng)用,根據(jù)題意在直角三角形運(yùn)用勾股定理列出方程是解答此題的關(guān)鍵.12、2或-1【解題分析】
根據(jù)已知題意,求第三邊的長必須分類討論,即8是斜邊或直角邊的兩種情況,然后利用勾股定理求出另一邊的長,再根據(jù)內(nèi)切圓半徑公式求解即可.【題目詳解】若8是直角邊,則該三角形的斜邊的長為:,∴內(nèi)切圓的半徑為:;若8是斜邊,則該三角形的另一條直角邊的長為:,∴內(nèi)切圓的半徑為:.故答案為2或-1.【題目點(diǎn)撥】本題考查了勾股定理,三角形的內(nèi)切圓,以及分類討論的數(shù)學(xué)思想,分類討論是解答本題的關(guān)鍵.13、B【解題分析】
利用同時(shí)開放其中的兩個(gè)安全出口,20分鐘所通過的小車的數(shù)量分析對比,能求出結(jié)果.【題目詳解】同時(shí)開放A、E兩個(gè)安全出口,與同時(shí)開放D、E兩個(gè)安全出口,20分鐘的通過數(shù)量發(fā)現(xiàn)得到D疏散乘客比A快;同理同時(shí)開放BC與CD進(jìn)行對比,可知B疏散乘客比D快;同理同時(shí)開放BC與AB進(jìn)行對比,可知C疏散乘客比A快;同理同時(shí)開放DE與CD進(jìn)行對比,可知E疏散乘客比C快;同理同時(shí)開放AB與AE進(jìn)行對比,可知B疏散乘客比E快;所以B口的速度最快故答案為B.【題目點(diǎn)撥】本題考查簡單的合理推理,考查推理論證能力等基礎(chǔ)知識,考查運(yùn)用求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.14、8π【解題分析】
圓錐的側(cè)面積就等于母線長乘底面周長的一半.依此公式計(jì)算即可.【題目詳解】側(cè)面積=4×4π÷2=8π.故答案為8π.【題目點(diǎn)撥】本題主要考查了圓錐的計(jì)算,正確理解圓錐的側(cè)面積的計(jì)算可以轉(zhuǎn)化為扇形的面積的計(jì)算,理解圓錐與展開圖之間的關(guān)系.15、1【解題分析】
方程組兩方程相加即可求出x+y的值.【題目詳解】,①+②得:1(x+y)=9,則x+y=1.故答案為:1.【題目點(diǎn)撥】此題考查了解二元一次方程組,利用了消元的思想,消元的方法有:代入消元法與加減消元法.16、48°【解題分析】
如圖,在⊙O上取一點(diǎn)K,連接AK、KC、OA、OC,由圓的內(nèi)接四邊形的性質(zhì)可求出∠AKC的度數(shù),利用圓周角定理可求出∠AOC的度數(shù),由切線性質(zhì)可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.【題目詳解】如圖,在⊙O上取一點(diǎn)K,連接AK、KC、OA、OC.∵四邊形AKCB內(nèi)接于圓,∴∠AKC+∠ABC=180°,∵∠ABC=114°,∴∠AKC=66°,∴∠AOC=2∠AKC=132°,∵DA、DC分別切⊙O于A、C兩點(diǎn),∴∠OAD=∠OCB=90°,∴∠ADC+∠AOC=180°,∴∠ADC=48°故答案為48°.【題目點(diǎn)撥】本題考查圓內(nèi)接四邊形的性質(zhì)、周角定理及切線性質(zhì),圓內(nèi)接四邊形的對角互補(bǔ);在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半;圓的切線垂直于過切點(diǎn)的直徑;熟練掌握相關(guān)知識是解題關(guān)鍵.三、解答題(共8題,共72分)17、甲、乙兩公司人均捐款分別為80元、100元.【解題分析】試題分析:本題考察的是分式的應(yīng)用題,設(shè)甲公司人均捐款x元,根據(jù)題意列出方程即可.試題解析:設(shè)甲公司人均捐款x元解得:經(jīng)檢驗(yàn),為原方程的根,80+20=100答:甲、乙兩公司人均各捐款為80元、100元.18、(2)見解析;(2)k<2.【解題分析】
(2)根據(jù)方程的系數(shù)結(jié)合根的判別式,可得△=(k-2)2≥2,由此可證出方程總有兩個(gè)實(shí)數(shù)根;(2)利用分解因式法解一元二次方程,可得出x=2、x=k+2,根據(jù)方程有一根小于2,即可得出關(guān)于k的一元一次不等式,解之即可得出k的取值范圍.【題目詳解】(2)證明:∵在方程中,△=[-(k+3)]-4×2×(2k+2)=k-2k+2=(k-2)≥2,∴方程總有兩個(gè)實(shí)數(shù)根.(2)∵x-(k+3)x+2k+2=(x-2)(x-k-2)=2,∴x=2,x=k+2.∵方程有一根小于2,∴k+2<2,解得:k<2,∴k的取值范圍為k<2.【題目點(diǎn)撥】此題考查根的判別式,解題關(guān)鍵在于掌握運(yùn)算公式.19、(1)證明見解析;(2)BC=,AD=.【解題分析】分析:(1)連接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,據(jù)此得∠OEB=∠CBE,從而得出OE∥BC,進(jìn)一步即可得證;(2)證△BDE∽△BEC得,據(jù)此可求得BC的長度,再證△AOE∽△ABC得,據(jù)此可得AD的長.詳解:(1)如圖,連接OE,∵OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠CBE,∴∠OEB=∠CBE,∴OE∥BC,又∵∠C=90°,∴∠AEO=90°,即OE⊥AC,∴AC為⊙O的切線;(2)∵ED⊥BE,∴∠BED=∠C=90°,又∵∠DBE=∠EBC,∴△BDE∽△BEC,∴,即,∴BC=;∵∠AEO=∠C=90°,∠A=∠A,∴△AOE∽△ABC,∴,即,解得:AD=.點(diǎn)睛:本題主要考查切線的判定與性質(zhì),解題的關(guān)鍵是掌握切線的判定與性質(zhì)及相似三角形的判定與性質(zhì).20、(1)證明見解析(2)【解題分析】
(1)連結(jié)OC,如圖,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,則∠3=∠2,于是可判斷OD∥AE,根據(jù)平行線的性質(zhì)得OD⊥CE,然后根據(jù)切線的判定定理得到結(jié)論;(2)由△CDB∽△CAD,可得,推出CD2=CB?CA,可得(3)2=3CA,推出CA=6,推出AB=CA﹣BC=3,,設(shè)BD=k,AD=2k,在Rt△ADB中,可得2k2+4k2=5,求出k即可解決問題.【題目詳解】(1)證明:連結(jié)OC,如圖,∵AD平分∠EAC,∴∠1=∠3,∵OA=OD,∴∠1=∠2,∴∠3=∠2,∴OD∥AE,∵AE⊥DC,∴OD⊥CE,∴CE是⊙O的切線;(2)∵∠CDO=∠ADB=90°,∴∠2=∠CDB=∠1,∵∠C=∠C,∴△CDB∽△CAD,∴,∴CD2=CB?CA,∴(3)2=3CA,∴CA=6,∴AB=CA﹣BC=3,,設(shè)BD=k,AD=2k,在Rt△ADB中,2k2+4k2=5,∴k=,∴AD=.21、(1)見解析;(2).【解題分析】
(1)連接OD,根據(jù)切線的判定方法即可求出答案;(2)由于OD∥AC,點(diǎn)O是AB的中點(diǎn),從而可知OD為△ABC的中位線,在Rt△CDE中,∠C=60°,CE=CD=1,所以AE=AC?CE=4?1=3,在Rt△AEF中,所以EF=AE?sinA=3×sin60°=.【題目詳解】(1)連接OD,∵△ABC是等邊三角形,∴∠C=∠A=∠B=60°,∵OD=OB,∴△ODB是等邊三角形,∴∠ODB=60°∴∠ODB=∠C,∴OD∥AC,∴DE⊥AC∴OD⊥DE,∴DE是⊙O的切線(2)∵OD∥AC,點(diǎn)O是AB的中點(diǎn),∴OD為△ABC的中位線,∴BD=CD=2在Rt△CDE中,∠C=60°,∴∠CDE=30°,∴CE=CD=1∴AE=AC﹣CE=4﹣1=3在Rt△AEF中,∠A=60°,∴EF=AE?sinA=3×sin60°=【題目點(diǎn)撥】本題考查圓的綜合問題,涉及切線的判定,銳角三角函數(shù),含30度角的直角三角形的性質(zhì),等邊三角形的性質(zhì),本題屬于中等題型.22、證明見解析.【解題分析】試題分析:首先根據(jù)等邊對等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,進(jìn)而得到∠C=∠D,根據(jù)等角對等邊可得CO=DO.試題解析:證明:∵AB∥CD∴∠A=∠D∠B=∠C∵OA=OB∴∠A=∠B∴∠C=∠D∴OC=OD考點(diǎn):等腰三角形的性質(zhì)與判定,平行線的性質(zhì)23、(1)見解析;(2)△ADF的面積是.【解題分析】試題分析:(1)連接OD,CD,求出∠BDC=90°,根據(jù)OE∥AB和OA=OC求出BE=CE,推出DE=CE,根據(jù)SSS證△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;
(2)過O作OM⊥AB于M,過F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根據(jù)sin∠BAC=,求出OM,根據(jù)cos∠BAC=,求出AM,根據(jù)垂徑定理求出AD,代入三角形的面積公式求出即可.試題解析:(1)證明:連接OD,CD,∵AC是⊙O的直徑,∴∠CDA=90°=∠BDC,∵OE∥AB,CO=AO,∴BE=CE,∴DE=CE,∵在△ECO和△EDO中,∴△ECO≌△EDO,∴∠EDO=∠ACB=90°,即OD⊥DE,OD過圓心O,∴ED為⊙O的切線.(2)過O作OM⊥AB于M,過F作FN⊥AB于N,則OM∥FN,∠OMN=90°,∵OE∥AB,∴四邊形OMFN是矩形,∴FN=OM,∵DE=4,OC=3,由勾股定理得:OE=5,∴AC=2OC=6,∵OE∥AB,∴△OEC∽△ABC,∴,∴,∴AB=10,在Rt△BCA中,由勾股定理得:BC==8,sin∠BAC=,即,OM==FN,∵cos∠BAC=,∴AM=由垂徑定理得:AD=2AM=,即△ADF的面積是AD×FN=××=.答:△ADF的面積是.【題目點(diǎn)撥】考查了切線的性質(zhì)和判定,勾股定理,三角形的面積,垂徑定理,直角三角形的斜邊上中線性質(zhì),全等三角形的性質(zhì)和判定等知識點(diǎn)的運(yùn)用,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)站流量增長策略協(xié)議
- 體育產(chǎn)業(yè)貸款服務(wù)合同
- 企業(yè)并購融資顧問服務(wù)合同
- 舞弊審計(jì)研究
- 磚墻砌筑工程合同模板
- 畜牧養(yǎng)殖合伙協(xié)議指南
- 股票配資資金借入?yún)f(xié)議
- 瓦工勞務(wù)分包合同
- 集裝箱租賃合同書范文集錦
- 2024年小產(chǎn)權(quán)房屋買賣合同
- DPPH和ABTS、PTIO自由基清除實(shí)驗(yàn)-操作圖解-李熙燦-Xican-Li
- 高中生物教研組工作計(jì)劃(通用9篇)
- 二年級【美術(shù)(人美版)】新穎的小鐘表
- 小學(xué)美術(shù) 五年級第二學(xué)期 人美版《中國畫》單元作業(yè)設(shè)計(jì)《花鳥畫》《山水畫》
- 陰道鏡的臨床應(yīng)用專家講座
- 郴州市建筑節(jié)能產(chǎn)品(材料)備案證明
- 汽車外覆蓋件
- 公共政策課件 swot分析與美國西南航空公司的成功
- 西方經(jīng)濟(jì)學(xué)十大原理
- 函數(shù)的奇偶性(第二課時(shí)) (知識精講+備課精研) 高一數(shù)學(xué) 課件(蘇教版2019必修第一冊)
- 2023年中國融通文化教育集團(tuán)有限公司招聘筆試題庫及答案解析
評論
0/150
提交評論