四川省閬中市重點名校2024屆初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第1頁
四川省閬中市重點名校2024屆初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第2頁
四川省閬中市重點名校2024屆初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第3頁
四川省閬中市重點名校2024屆初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第4頁
四川省閬中市重點名校2024屆初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省閬中市重點名校2024屆初中數(shù)學畢業(yè)考試模擬沖刺卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若關于x的分式方程的解為正數(shù),則滿足條件的正整數(shù)m的值為()A.1,2,3 B.1,2 C.1,3 D.2,32.觀察圖中的“品”字形中個數(shù)之間的規(guī)律,根據(jù)觀察到的規(guī)律得出a的值為A.75 B.89 C.103 D.1393.下列調查中適宜采用抽樣方式的是()A.了解某班每個學生家庭用電數(shù)量B.調查你所在學校數(shù)學教師的年齡狀況C.調查神舟飛船各零件的質量D.調查一批顯像管的使用壽命4.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0).下列結論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當x>﹣1時,y>0,其中正確結論的個數(shù)是A.5個 B.4個 C.3個 D.2個5.下列算式的運算結果正確的是()A.m3?m2=m6B.m5÷m3=m2(m≠0)C.(m﹣2)3=m﹣5D.m4﹣m2=m26.甲車行駛30千米與乙車行駛40千米所用時間相同,已知乙車每小時比甲車多行駛15千米,設甲車的速度為千米/小時,依據(jù)題意列方程正確的是()A. B. C. D.7.已知xa=2,xb=3,則x3a﹣2b等于()A. B.﹣1 C.17 D.728.估算的值是在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間9.對于一組統(tǒng)計數(shù)據(jù):1,6,2,3,3,下列說法錯誤的是()A.平均數(shù)是3 B.中位數(shù)是3 C.眾數(shù)是3 D.方差是2.510.已知正比例函數(shù)的圖象經(jīng)過點,則此正比例函數(shù)的關系式為().A. B. C. D.11.如圖,立體圖形的俯視圖是A. B. C. D.12.從邊長為的大正方形紙板中挖去一個邊長為的小正方形紙板后,將其裁成四個相同的等腰梯形(如圖甲),然后拼成一個平行四邊形(如圖乙)。那么通過計算兩個圖形陰影部分的面積,可以驗證成立的公式為()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在我國著名的數(shù)學書九章算術中曾記載這樣一個數(shù)學問題:“今有共買羊,人出五,不足四十五;人出七,不足三,問人數(shù)、羊價各幾何?”其大意是:今有人合伙買羊,若每人出5錢,還差45錢;若每人出7錢,還差3錢,問合伙人數(shù)、羊價各是多少?設羊價為x錢,則可列關于x的方程為______.14.若|a|=2016,則a=___________.15.如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的切線與AB的延長線交于點P,連接AC,若∠A=30°,PC=3,則BP的長為.16.如圖所示,在長為10m、寬為8m的長方形空地上,沿平行于各邊的方向分割出三個全等的小長方形花圃則其中一個小長方形花圃的周長是______m.17.計算的結果為.18.若實數(shù)a、b在數(shù)軸上的位置如圖所示,則代數(shù)式|b﹣a|+化簡為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)在平面直角坐標系中,已知直線y=﹣x+4和點M(3,2)(1)判斷點M是否在直線y=﹣x+4上,并說明理由;(2)將直線y=﹣x+4沿y軸平移,當它經(jīng)過M關于坐標軸的對稱點時,求平移的距離;(3)另一條直線y=kx+b經(jīng)過點M且與直線y=﹣x+4交點的橫坐標為n,當y=kx+b隨x的增大而增大時,則n取值范圍是_____.20.(6分)某商城銷售A,B兩種自行車型自行車售價為2

100元輛,B型自行車售價為1

750元輛,每輛A型自行車的進價比每輛B型自行車的進價多400元,商城用80

000元購進A型自行車的數(shù)量與用64

000元購進B型自行車的數(shù)量相等.求每輛A,B兩種自行車的進價分別是多少?現(xiàn)在商城準備一次購進這兩種自行車共100輛,設購進A型自行車m輛,這100輛自行車的銷售總利潤為y元,要求購進B型自行車數(shù)量不超過A型自行車數(shù)量的2倍,總利潤不低于13

000元,求獲利最大的方案以及最大利潤.21.(6分)為了保證端午龍舟賽在我市漢江水域順利舉辦,某部門工作人員乘快艇到漢江水域考察水情,以每秒10米的速度沿平行于岸邊的賽道AB由西向東行駛.在A處測得岸邊一建筑物P在北偏東30°方向上,繼續(xù)行駛40秒到達B處時,測得建筑物P在北偏西60°方向上,如圖所示,求建筑物P到賽道AB的距離(結果保留根號).22.(8分)如圖,在△ABC中,D為AC上一點,且CD=CB,以BC為直徑作☉O,交BD于點E,連接CE,過D作DFAB于點F,∠BCD=2∠ABD.(1)求證:AB是☉O的切線;(2)若∠A=60°,DF=,求☉O的直徑BC的長.23.(8分)在平面直角坐標系中,拋物線y=(x﹣h)2+k的對稱軸是直線x=1.若拋物線與x軸交于原點,求k的值;當﹣1<x<0時,拋物線與x軸有且只有一個公共點,求k的取值范圍.24.(10分)某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當?shù)慕祪r措施.調查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應降價多少元?25.(10分)為了加強學生的安全意識,某校組織了學生參加安全知識競賽,從中抽取了部分的學生成績進行統(tǒng)計,繪制統(tǒng)計圖如圖(不完整).類別分數(shù)段A50.5~60.5B60.5~70.5C70.5~80.5D80.5~90.5E90.5~100.5請你根據(jù)上面的信息,解答下列問題.(1)若A組的頻數(shù)比B組小24,求頻數(shù)直方圖中的a,b的值;(2)在扇形統(tǒng)計圖中,D部分所對的圓心角為n°,求n的值并補全頻數(shù)直方圖;(3)若成績在80分以上為優(yōu)秀,全校共有2000名學生,估計成績優(yōu)秀的學生有多少名?26.(12分)在國家的宏觀調控下,某市的商品房成交價由去年10月份的14000元/下降到12月份的11340元/.求11、12兩月份平均每月降價的百分率是多少?如果房價繼續(xù)回落,按此降價的百分率,你預測到今年2月份該市的商品房成交均價是否會跌破10000元/?請說明理由27.(12分)如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作發(fā)現(xiàn)如圖1,固定△ABC,使△DEC繞點C旋轉.當點D恰好落在BC邊上時,填空:線段DE與AC的位置關系是;②設△BDC的面積為S1,△AEC的面積為S1.則S1與S1的數(shù)量關系是.猜想論證當△DEC繞點C旋轉到圖3所示的位置時,小明猜想(1)中S1與S1的數(shù)量關系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想.拓展探究已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,OE∥AB交BC于點E(如圖4),若在射線BA上存在點F,使S△DCF=S△BDC,請直接寫出相應的BF的長

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】試題分析:解分式方程得:等式的兩邊都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,已知關于x的分式方的解為正數(shù),得m=1,m=3,故選C.考點:分式方程的解.2、A【解題分析】觀察可得,上邊的數(shù)為連續(xù)的奇數(shù)1,3,5,7,9,11,左邊的數(shù)為21,22,23,…,所以b=26=64,又因上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),所以a=11+64=75,故選B.3、D【解題分析】

根據(jù)全面調查與抽樣調查的特點對各選項進行判斷.【題目詳解】解:了解某班每個學生家庭用電數(shù)量可采用全面調查;調查你所在學校數(shù)學教師的年齡狀況可采用全面調查;調查神舟飛船各零件的質量要采用全面調查;而調查一批顯像管的使用壽命要采用抽樣調查.故選:D.【題目點撥】本題考查了全面調查與抽樣調查:全面調查與抽樣調查的優(yōu)缺點:全面調查收集的到數(shù)據(jù)全面、準確,但一般花費多、耗時長,而且某些調查不宜用全面調查.抽樣調查具有花費少、省時的特點,但抽取的樣本是否具有代表性,直接關系到對總體估計的準確程度.4、B【解題分析】

解:∵二次函數(shù)y=ax3+bx+c(a≠3)過點(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵拋物線的對稱軸在y軸右側,∴,x>3.∴a與b異號.∴ab<3,正確.②∵拋物線與x軸有兩個不同的交點,∴b3﹣4ac>3.∵c=3,∴b3﹣4a>3,即b3>4a.正確.④∵拋物線開口向下,∴a<3.∵ab<3,∴b>3.∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正確.③∵a﹣b+c=3,∴a+c=b.∴a+b+c=3b>3.∵b<3,c=3,a<3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.∴3<a+b+c<3,正確.⑤拋物線y=ax3+bx+c與x軸的一個交點為(﹣3,3),設另一個交點為(x3,3),則x3>3,由圖可知,當﹣3<x<x3時,y>3;當x>x3時,y<3.∴當x>﹣3時,y>3的結論錯誤.綜上所述,正確的結論有①②③④.故選B.5、B【解題分析】

直接利用同底數(shù)冪的除法運算法則以及合并同類項法則、積的乘方運算法則分別化簡得出答案.【題目詳解】A、m3?m2=m5,故此選項錯誤;B、m5÷m3=m2(m≠0),故此選項正確;C、(m-2)3=m-6,故此選項錯誤;D、m4-m2,無法計算,故此選項錯誤;故選:B.【題目點撥】此題主要考查了同底數(shù)冪的除法運算以及合并同類項法則、積的乘方運算,正確掌握運算法則是解題關鍵.6、C【解題分析】由實際問題抽象出方程(行程問題).【分析】∵甲車的速度為千米/小時,則乙甲車的速度為千米/小時∴甲車行駛30千米的時間為,乙車行駛40千米的時間為,∴根據(jù)甲車行駛30千米與乙車行駛40千米所用時間相同得.故選C.7、A【解題分析】∵xa=2,xb=3,∴x3a?2b=(xa)3÷(xb)2=8÷9=,故選A.8、C【解題分析】

求出<<,推出4<<5,即可得出答案.【題目詳解】∵<<,∴4<<5,∴的值是在4和5之間.故選:C.【題目點撥】本題考查了估算無理數(shù)的大小和二次根式的性質,解此題的關鍵是得出<<,題目比較好,難度不大.9、D【解題分析】

根據(jù)平均數(shù)、中位數(shù)、眾數(shù)和方差的定義逐一求解可得.【題目詳解】解:A、平均數(shù)為1+6+2+3+35B、重新排列為1、2、3、3、6,則中位數(shù)為3,正確;C、眾數(shù)為3,正確;D、方差為15×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2故選:D.【題目點撥】本題考查了眾數(shù)、平均數(shù)、中位數(shù)、方差.平均數(shù)平均數(shù)表示一組數(shù)據(jù)的平均程度.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù));方差是用來衡量一組數(shù)據(jù)波動大小的量.10、A【解題分析】

根據(jù)待定系數(shù)法即可求得.【題目詳解】解:∵正比例函數(shù)y=kx的圖象經(jīng)過點(1,﹣3),∴﹣3=k,即k=﹣3,∴該正比例函數(shù)的解析式為:y=﹣3x.故選A.【題目點撥】此類題目需靈活運用待定系數(shù)法建立函數(shù)解析式,然后將點的坐標代入解析式,利用方程解決問題.11、C【解題分析】試題分析:立體圖形的俯視圖是C.故選C.考點:簡單組合體的三視圖.12、D【解題分析】

分別根據(jù)正方形及平行四邊形的面積公式求得甲、乙中陰影部分的面積,從而得到可以驗證成立的公式.【題目詳解】陰影部分的面積相等,即甲的面積=a2﹣b2,乙的面積=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以驗證成立的公式為:a2﹣b2=(a+b)(a﹣b).故選:D.【題目點撥】考點:等腰梯形的性質;平方差公式的幾何背景;平行四邊形的性質.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】

設羊價為x錢,根據(jù)題意可得合伙的人數(shù)為或,由合伙人數(shù)不變可得方程.【題目詳解】設羊價為x錢,根據(jù)題意可得方程:,故答案為:.【題目點撥】本題考查由實際問題抽象出一元一次方程,解答本題的關鍵是明確題意,列出相應的方程.14、±1【解題分析】試題分析:根據(jù)零指數(shù)冪的性質(),可知|a|=1,座椅可知a=±1.15、3.【解題分析】試題分析:連接OC,已知OA=OC,∠A=30°,所以∠OCA=∠A=30°,由三角形外角的性質可得∠COB=∠A+∠ACO=60°,又因PC是⊙O切線,可得∠PCO=90°,∠P=30°,再由PC=3,根據(jù)銳角三角函數(shù)可得OC=PC?tan30°=3,PC=2OC=23,即可得PB=PO﹣OB=3.考點:切線的性質;銳角三角函數(shù).16、12【解題分析】

由圖形可看出:小矩形的2個長+一個寬=10m,小矩形的2個寬+一個長=8m,設出長和寬,列出方程組解之即可求得答案.【題目詳解】解:設小長方形花圃的長為xm,寬為ym,由題意得,解得,所以其中一個小長方形花圃的周長是.【題目點撥】此題主要考查了二元一次方程組的應用,解題的關鍵是:數(shù)形結合,弄懂題意,找出等量關系,列出方程組.本題也可以讓列出的兩個方程相加,得3(x+y)=18,于是x+y=6,所以周長即為2(x+y)=12,問題得解.這種思路用了整體的數(shù)學思想,顯得較為簡捷.17、【解題分析】

直接把分子相加減即可.【題目詳解】=,故答案為:.【題目點撥】本題考查了分式的加減法,關鍵是要注意通分及約分的靈活應用.18、2a﹣b.【解題分析】

直接利用數(shù)軸上a,b的位置進而得出b﹣a<0,a>0,再化簡得出答案.【題目詳解】解:由數(shù)軸可得:b﹣a<0,a>0,則|b﹣a|+=a﹣b+a=2a﹣b.故答案為2a﹣b.【題目點撥】此題主要考查了二次根式的性質與化簡,正確得出各項符號是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)點M(1,2)不在直線y=﹣x+4上,理由見解析;(2)平移的距離為1或2;(1)2<n<1.【解題分析】

(1)將x=1代入y=-x+4,求出y=-1+4=1≠2,即可判斷點M(1,2)不在直線y=-x+4上;(2)設直線y=-x+4沿y軸平移后的解析式為y=-x+4+b.分兩種情況進行討論:①點M(1,2)關于x軸的對稱點為點M1(1,-2);②點M(1,2)關于y軸的對稱點為點M2(-1,2).分別求出b的值,得到平移的距離;(1)由直線y=kx+b經(jīng)過點M(1,2),得到b=2-1k.由直線y=kx+b與直線y=-x+4交點的橫坐標為n,得出y=kn+b=-n+4,k=.根據(jù)y=kx+b隨x的增大而增大,得到k>0,即>0,那么①,或②,分別解不等式組即可求出n的取值范圍.【題目詳解】(1)點M不在直線y=﹣x+4上,理由如下:∵當x=1時,y=﹣1+4=1≠2,∴點M(1,2)不在直線y=﹣x+4上;(2)設直線y=﹣x+4沿y軸平移后的解析式為y=﹣x+4+b.①點M(1,2)關于x軸的對稱點為點M1(1,﹣2),∵點M1(1,﹣2)在直線y=﹣x+4+b上,∴﹣2=﹣1+4+b,∴b=﹣1,即平移的距離為1;②點M(1,2)關于y軸的對稱點為點M2(﹣1,2),∵點M2(﹣1,2)在直線y=﹣x+4+b上,∴2=1+4+b,∴b=﹣2,即平移的距離為2.綜上所述,平移的距離為1或2;(1)∵直線y=kx+b經(jīng)過點M(1,2),∴2=1k+b,b=2﹣1k.∵直線y=kx+b與直線y=﹣x+4交點的橫坐標為n,∴y=kn+b=﹣n+4,∴kn+2﹣1k=﹣n+4,∴k=.∵y=kx+b隨x的增大而增大,∴k>0,即>0,∴①,或②,不等式組①無解,不等式組②的解集為2<n<1.∴n的取值范圍是2<n<1.故答案為2<n<1.【題目點撥】本題考查了一次函數(shù)圖象與幾何變換,一次函數(shù)圖象上點的坐標特征,一次函數(shù)的性質,解一元一次不等式組,都是基礎知識,需熟練掌握.20、(1)每輛A型自行車的進價為2000元,每輛B型自行車的進價為1600元;(2)當購進A型自行車34輛,B型自行車66輛時獲利最大,最大利潤為13300元.【解題分析】

(1)設每輛B型自行車的進價為x元,則每輛A型自行車的進價為(x+10)元,根據(jù)題意列出方程,求出方程的解即可得到結果;

(2)由總利潤=單輛利潤×輛數(shù),列出y與x的關系式,利用一次函數(shù)性質確定出所求即可.【題目詳解】(1)設每輛B型自行車的進價為x元,則每輛A型自行車的進價為(x+10)元,根據(jù)題意,得=,解得x=1600,經(jīng)檢驗,x=1600是原方程的解,x+10=1600+10=2000,答:每輛A型自行車的進價為2000元,每輛B型自行車的進價為1600元;(2)由題意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,根據(jù)題意,得,解得:33≤m≤1,∵m為正整數(shù),∴m=34,35,36,37,38,39,1.∵y=﹣50m+15000,k=﹣50<0,∴y隨m的增大而減小,∴當m=34時,y有最大值,最大值為:﹣50×34+15000=13300(元).答:當購進A型自行車34輛,B型自行車66輛時獲利最大,最大利潤為13300元.【題目點撥】本題主要考查一次函數(shù)的應用、分式方程的應用及一元一次不等式組的應用.仔細審題,找出題目中的數(shù)量關系是解答本題的關鍵.21、100米.【解題分析】【分析】如圖,作PC⊥AB于C,構造出Rt△PAC與Rt△PBC,求出AB的長度,利用特殊角的三角函數(shù)值進行求解即可得.【題目詳解】如圖,過P點作PC⊥AB于C,由題意可知:∠PAC=60°,∠PBC=30°,在Rt△PAC中,tan∠PAC=,∴AC=PC,在Rt△PBC中,tan∠PBC=,∴BC=PC,∵AB=AC+BC=PC+PC=10×40=400,∴PC=100,答:建筑物P到賽道AB的距離為100米.【題目點撥】本題考查了解直角三角形的應用,正確添加輔助線構造直角三角形,利用特殊角的三角函數(shù)值進行解答是關鍵.22、(1)證明過程見解析;(2)【解題分析】

(1)根據(jù)CB=CD得出∠CBD=∠CDB,然后結合∠BCD=2∠ABD得出∠ABD=∠BCE,從而得出∠CBD+∠ABD=∠CBD+∠BCE=90°,然后得出切線;(2)根據(jù)Rt△AFD和Rt△BFD的性質得出AF和DF的長度,然后根據(jù)△ADF和△ACB相似得出相似比,從而得出BC的長度.【題目詳解】(1)∵CB=CD∴∠CBD=∠CDB又∵∠CEB=90°∴∠CBD+∠BCE=∠CDE+∠DCE∴∠BCE=∠DCE且∠BCD=2∠ABD∴∠ABD=∠BCE∴∠CBD+∠ABD=∠CBD+∠BCE=90°∴CB⊥AB垂足為B又∵CB為直徑∴AB是⊙O的切線.(2)∵∠A=60°,DF=∴在Rt△AFD中得出AF=1在Rt△BFD中得出DF=3∵∠ADF=∠ACB∠A=∠A∴△ADF∽△ACB∴即解得:CB=考點:(1)圓的切線的判定;(2)三角函數(shù);(3)三角形相似的判定23、(1)k=﹣1;(2)當﹣4<k<﹣1時,拋物線與x軸有且只有一個公共點.【解題分析】

(1)由拋物線的對稱軸直線可得h,然后再由拋物線交于原點代入求出k即可;(2)先根據(jù)拋物線與x軸有公共點求出k的取值范圍,然后再根據(jù)拋物線的對稱軸及當﹣1<x<2時,拋物線與x軸有且只有一個公共點,進一步求出k的取值范圍即可.【題目詳解】解:(1)∵拋物線y=(x﹣h)2+k的對稱軸是直線x=1,∴h=1,把原點坐標代入y=(x﹣1)2+k,得,(2﹣1)2+k=2,解得k=﹣1;(2)∵拋物線y=(x﹣1)2+k與x軸有公共點,∴對于方程(x﹣1)2+k=2,判別式b2﹣4ac=﹣4k≥2,∴k≤2.當x=﹣1時,y=4+k;當x=2時,y=1+k,∵拋物線的對稱軸為x=1,且當﹣1<x<2時,拋物線與x軸有且只有一個公共點,∴4+k>2且1+k<2,解得﹣4<k<﹣1,綜上,當﹣4<k<﹣1時,拋物線與x軸有且只有一個公共點.【題目點撥】拋物線與一元二次方程的綜合是本題的考點,熟練掌握拋物線的性質是解題的關鍵.24、100或200【解題分析】試題分析:此題利用每一臺冰箱的利潤×每天售出的臺數(shù)=每天盈利,設出每臺冰箱應降價x元,列方程解答即可.試題解析:設每臺冰箱應降價x元,每件冰箱的利潤是:元,賣(8+×4)件,列方程得,(8+×4)=4800,x2﹣300x+20000=0,解得x1=200,x2=100;要使百姓得到實惠,只能取x=200,答:每臺冰箱應降價200元.考點:一元二次方程的應用.25、(1)40(2)126°,1(3)940名【解題分析】

(1)根據(jù)若A組的頻數(shù)比B組小24,且已知兩個組的百分比,據(jù)此即可求得總人數(shù),然后根據(jù)百分比的意義求得a、b的值;(2)利用360°乘以對應的比例即可求解;(3)利用總人數(shù)乘以對應的百分比即可求解.【題目詳解】(1)學生總數(shù)是24÷(20%﹣8%)=200(人),則a=200×8%=16,b=200×20%=40;(2)n=360×=126°.C組的人數(shù)是:200×25%=1.;(3)樣本D、E兩組的百分數(shù)的和為1﹣25%﹣20%﹣8%=47%,∴2000×47%=940(名)答估計成績優(yōu)秀的學生有940名.【題目點撥】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.26、(1)10%;(1)會跌破10000元/m1.【解題分析】

(1)設11、11兩月平均每月降價的百分率是x,那么4月份的房價為14000(1-x),11月份的房價為14000(1-x)1,然后根據(jù)11月份的11340元/m1即可列出方程解決問題;(1)根據(jù)(1)的結果可以計算出今年1月份商品房成交均價,然后和10000元/m1進行比較即可作出判斷.【題目詳解】(1)設11、11兩月平均每月降價的百分率是x,則11月份的成交價是:14000(1-x),11月份的成交價是:14000(1-x)1,∴14000(1-x)1=11340,∴(1-x)1=0.81,∴x1=0.1=10%,x1=1.9(不合題意,舍去)答:11、11兩月平均每月降價的百分率是10%;(1)會跌破10000元/m1.如果按此降價的百分率繼續(xù)回落,估計今年1月份該市的商品房成交均價為:11340(1-x)1=11340×0.81=9184.5<10000,由此

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論