版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆北京師大附中中考試題猜想數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列計算正確的是()A.3a﹣2a=1 B.a2+a5=a7 C.(ab)3=ab3 D.a2?a4=a62.在某?!拔业闹袊鴫簟毖葜v比賽中,有9名學生參加決賽,他們決賽的最終成績各不相同.其中的一名學生想要知道自己能否進入前5名,不僅要了解自己的成績,還要了解這9名學生成績的()A.眾數(shù) B.方差 C.平均數(shù) D.中位數(shù)3.如圖所示是8個完全相同的小正方體組成的幾何體,則該幾何體的左視圖是()A. B.C. D.4.在平面直角坐標系xOy中,四條拋物線如圖所示,其解析式中的二次項系數(shù)一定小于1的是()A.y1 B.y2 C.y3 D.y45.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC=9,則AE的值是()A. B. C.6 D.46.下列調查中,最適合采用全面調查(普查)的是()A.對我市中學生每周課外閱讀時間情況的調查B.對我市市民知曉“禮讓行人”交通新規(guī)情況的調查C.對我市中學生觀看電影《厲害了,我的國》情況的調查D.對我國首艘國產航母002型各零部件質量情況的調查7.某種品牌手機經過二、三月份再次降價,每部售價由1000元降到810元,則平均每月降價的百分率為()A.20% B.11% C.10% D.9.5%8.如圖,在△ABC中,點D、E分別在邊AB、AC的反向延長線上,下面比例式中,不能判定ED//BC的是()A. B.C. D.9.如圖是由三個相同的小正方體組成的幾何體,則該幾何體的左視圖是()A. B. C. D.10.下列代數(shù)運算正確的是()A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3?x2=x5二、填空題(本大題共6個小題,每小題3分,共18分)11.填在下列各圖形中的三個數(shù)之間都有相同的規(guī)律,根據(jù)此規(guī)律,a的值是____.12.在矩形ABCD中,AB=6CM,E為直線CD上一點,連接AC,BE,若AC與BE交與點F,DE=2,則EF:BE=________。13.定義:直線l1與l2相交于點O,對于平面內任意一點M,點M到直線l1,l2的距離分別為p、q,則稱有序實數(shù)對(p,q)是點M的“距離坐標”.根據(jù)上述定義,“距離坐標”是(1,2)的點的個數(shù)共有______個.14.若-2amb4與5a2bn+7是同類項,則m+n=.15.5月份,甲、乙兩個工廠用水量共為200噸.進入夏季用水高峰期后,兩工廠積極響應國家號召,采取節(jié)水措施.6月份,甲工廠用水量比5月份減少了15%,乙工廠用水量比5月份減少了10%,兩個工廠6月份用水量共為174噸,求兩個工廠5月份的用水量各是多少.設甲工廠5月份用水量為x噸,乙工廠5月份用水量為y噸,根據(jù)題意列關于x,y的方程組為__.16.如圖,在正方形網格中,線段A′B′可以看作是線段AB經過若干次圖形的變化(平移、旋轉、軸對稱)得到的,寫出一種由線段AB得到線段A′B′的過程______三、解答題(共8題,共72分)17.(8分)如圖,拋物線y=﹣x2﹣x+4與x軸交于A,B兩點(A在B的左側),與y軸交于點C.(1)求點A,點B的坐標;(2)P為第二象限拋物線上的一個動點,求△ACP面積的最大值.18.(8分)如圖,拋物線y=ax2+bx(a<0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設A(t,0),當t=2時,AD=1.求拋物線的函數(shù)表達式.當t為何值時,矩形ABCD的周長有最大值?最大值是多少?保持t=2時的矩形ABCD不動,向右平移拋物線.當平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.19.(8分)如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結AE、BF.求證:(1)AE=BF;(2)AE⊥BF.20.(8分)已知動點P以每秒2
cm的速度沿圖(1)的邊框按從B?C?D?E?F?A的路徑移動,相應的△ABP的面積S與時間t之間的關系如圖(2)中的圖象表示.若AB=6
cm,試回答下列問題:(1)圖(1)中的BC長是多少?(2)圖(2)中的a是多少?(3)圖(1)中的圖形面積是多少?(4)圖(2)中的b是多少?21.(8分)如圖,在△ABC中,點D,E分別在邊AB,AC上,且BE平分∠ABC,∠ABE=∠ACD,BE,CD交于點F.(1)求證:;(2)請?zhí)骄烤€段DE,CE的數(shù)量關系,并說明理由;(3)若CD⊥AB,AD=2,BD=3,求線段EF的長.22.(10分)已知:如圖,在矩形紙片ABCD中,,,翻折矩形紙片,使點A落在對角線DB上的點F處,折痕為DE,打開矩形紙片,并連接EF.的長為多少;求AE的長;在BE上是否存在點P,使得的值最?。咳舸嬖?,請你畫出點P的位置,并求出這個最小值;若不存在,請說明理由.23.(12分)某商場用24000元購入一批空調,然后以每臺3000元的價格銷售,因天氣炎熱,空調很快售完,商場又以52000元的價格再次購入該種型號的空調,數(shù)量是第一次購入的2倍,但購入的單價上調了200元,每臺的售價也上調了200元.商場第一次購入的空調每臺進價是多少元?商場既要盡快售完第二次購入的空調,又要在這兩次空調銷售中獲得的利潤率不低于22%,打算將第二次購入的部分空調按每臺九五折出售,最多可將多少臺空調打折出售?24.如圖,某市郊外景區(qū)內一條筆直的公路a經過三個景點A、B、C,景區(qū)管委會又開發(fā)了風景優(yōu)美的景點D,經測量,景點D位于景點A的北偏東30′方向8km處,位于景點B的正北方向,還位于景點C的北偏西75°方向上,已知AB=5km.景區(qū)管委會準備由景點D向公路a修建一條距離最短的公路,不考試其他因素,求出這條公路的長.(結果精確到0.1km).求景點C與景點D之間的距離.(結果精確到1km).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】
根據(jù)合并同類項法則、積的乘方及同底數(shù)冪的乘法的運算法則依次計算后即可解答.【題目詳解】∵3a﹣2a=a,∴選項A不正確;∵a2+a5≠a7,∴選項B不正確;∵(ab)3=a3b3,∴選項C不正確;∵a2?a4=a6,∴選項D正確.故選D.【題目點撥】本題考查了合并同類項法則、積的乘方及同底數(shù)冪的乘法的運算法則,熟練運用法則是解決問題的關鍵.2、D【解題分析】
根據(jù)中位數(shù)是一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù))的意義,9人成績的中位數(shù)是第5名的成績.參賽選手要想知道自己是否能進入前5名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【題目詳解】由于總共有9個人,且他們的分數(shù)互不相同,第5的成績是中位數(shù),要判斷是否進入前5名,故應知道中位數(shù)的多少.故本題選:D.【題目點撥】本題考查了統(tǒng)計量的選擇,熟練掌握眾數(shù),方差,平均數(shù),中位數(shù)的概念是解題的關鍵.3、A【解題分析】分析:根據(jù)主視圖、左視圖、俯視圖是分別從物體正面、側面和上面看所得到的圖形,從而得出該幾何體的左視圖.詳解:該幾何體的左視圖是:故選A.點睛:本題考查了學生的思考能力和對幾何體三種視圖的空間想象能力.4、A【解題分析】
由圖象的點的坐標,根據(jù)待定系數(shù)法求得解析式即可判定.【題目詳解】由圖象可知:拋物線y1的頂點為(-2,-2),與y軸的交點為(0,1),根據(jù)待定系數(shù)法求得y1=(x+2)2-2;拋物線y2的頂點為(0,-1),與x軸的一個交點為(1,0),根據(jù)待定系數(shù)法求得y2=x2-1;拋物線y3的頂點為(1,1),與y軸的交點為(0,2),根據(jù)待定系數(shù)法求得y3=(x-1)2+1;拋物線y4的頂點為(1,-3),與y軸的交點為(0,-1),根據(jù)待定系數(shù)法求得y4=2(x-1)2-3;綜上,解析式中的二次項系數(shù)一定小于1的是y1故選A.【題目點撥】本題考查了二次函數(shù)的圖象,二次函數(shù)的性質以及待定系數(shù)法求二次函數(shù)的解析式,根據(jù)點的坐標求得解析式是解題的關鍵.5、C【解題分析】
由角平分線的定義得到∠CBE=∠ABE,再根據(jù)線段的垂直平分線的性質得到EA=EB,則∠A=∠ABE,可得∠CBE=30°,根據(jù)含30度的直角三角形三邊的關系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【題目詳解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故選C.6、D【解題分析】
由普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似.由此,對各選項進行辨析即可.【題目詳解】A、對我市中學生每周課外閱讀時間情況的調查,人數(shù)眾多,意義不大,應采用抽樣調查,故此選項錯誤;B、對我市市民知曉“禮讓行人”交通新規(guī)情況的調查,人數(shù)眾多,意義不大,應采用抽樣調查,故此選項錯誤;C、對我市中學生觀看電影《厲害了,我的國》情況的調查,人數(shù)眾多,意義不大,應采用抽樣調查,故此選項錯誤;D、對我國首艘國產航母002型各零部件質量情況的調查,意義重大,應采用普查,故此選項正確;故選D.【題目點撥】本題考查了抽樣調查和全面調查的區(qū)別,選擇普查還是抽樣調查要根據(jù)所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查往往選用普查.7、C【解題分析】
設二,三月份平均每月降價的百分率為,則二月份為,三月份為,然后再依據(jù)第三個月售價為1,列出方程求解即可.【題目詳解】解:設二,三月份平均每月降價的百分率為.根據(jù)題意,得=1.解得,(不合題意,舍去).答:二,三月份平均每月降價的百分率為10%【題目點撥】本題主要考查一元二次方程的應用,關于降價百分比的問題:若原數(shù)是a,每次降價的百分率為a,則第一次降價后為a(1-x);第二次降價后后為a(1-x)2,即:原數(shù)x(1-降價的百分率)2=后兩次數(shù).8、C【解題分析】
根據(jù)平行線分線段成比例定理推理的逆定理,對各選項進行逐一判斷即可.【題目詳解】A.當時,能判斷;B.
當時,能判斷;C.
當時,不能判斷;D.
當時,,能判斷.故選:C.【題目點撥】本題考查平行線分線段成比例定理推理的逆定理,根據(jù)定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊.能根據(jù)定理判斷線段是否為對應線段是解決此題的關鍵.9、C【解題分析】分析:細心觀察圖中幾何體中正方體擺放的位置,根據(jù)左視圖是從左面看到的圖形判定則可.詳解:從左邊看豎直疊放2個正方形.故選:C.點睛:此題考查了幾何體的三種視圖和學生的空間想象能力,左視圖是從物體左面看所得到的圖形,解答時學生易將三種視圖混淆而錯誤的選其它選項.10、D【解題分析】
分別根據(jù)同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式進行逐一計算即可.【題目詳解】解:A.(x+1)2=x2+2x+1,故A錯誤;B.(x3)2=x6,故B錯誤;C.(2x)2=4x2,故C錯誤.D.x3?x2=x5,故D正確.故本題選D.【題目點撥】本題考查的是同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式,熟練掌握他們的定義是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解題分析】尋找規(guī)律:上面是1,2,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:從第二個圖形開始,左下數(shù)字減上面數(shù)字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=1.12、4:7或2:5【解題分析】
根據(jù)E在CD上和CD的延長線上,運用相似三角形分類討論即可.【題目詳解】解:當E在線段CD上如圖:∵矩形ABCD∴AB∥CD∴△ABF∽△CFE∴設,即EF=2k,BF=3k∴BE=BF+EF=5k∴EF:BE=2k∶5k=2∶5當當E在線段CD的延長線上如圖:∵矩形ABCD∴AB∥CD∴△ABF∽△CFE∴設,即EF=4k,BF=3k∴BE=BF+EF=7k∴EF:BE=4k∶7k=4∶7故答案為:4:7或2:5.【題目點撥】本題以矩形為載體,考查了相似三角形的性質,解題的關鍵在于根據(jù)圖形分類討論,即數(shù)形結合的靈活應用.13、4【解題分析】
根據(jù)“距離坐標”和平面直角坐標系的定義分別寫出各點即可.【題目詳解】距離坐標是(1,2)的點有(1,2),(-1,2),(-1,-2),(1,-2)共四個,所以答案填寫4.【題目點撥】本題考查了點的坐標,理解題意中距離坐標是解題的關鍵.14、-1.【解題分析】試題分析:根據(jù)同類項是字母相同且相同字母的指數(shù)也相同,可得方程組,根據(jù)解方程組,可得m、n的值,根據(jù)有理數(shù)的加法,可得答案.試題解析:由-2amb4與5a2bn+7是同類項,得m=2n+7=4解得m=2n=-3∴m+n=-1.考點:同類項.15、x+y=200(1-15%)x+(1-10%)y=174【解題分析】
甲工廠5月份用水量為x噸,乙工廠5月份用水量為y噸,根據(jù)甲、乙兩廠5月份用水量與6月份用水量列出關于x、y的方程組即可.【題目詳解】甲工廠5月份用水量為x噸,乙工廠5月份用水量為y噸,根據(jù)題意得:x+y=200(1-15%)x+(1-10%)y=174故答案為:x+y=200(1-15%)x+(1-10%)y=174【題目點撥】本題考查了二元一次方程組的應用,弄清題意,找準等量關系是解題的關鍵.16、將線段AB繞點B逆時針旋轉90°,在向右平移2個單位長度【解題分析】
根據(jù)圖形的旋轉和平移性質即可解題.【題目詳解】解:將線段AB繞點B逆時針旋轉90°,在向右平移2個單位長度即可得到A′B′、【題目點撥】本題考查了旋轉和平移,屬于簡單題,熟悉旋轉和平移的概念是解題關鍵.三、解答題(共8題,共72分)17、(1)A(﹣4,0),B(2,0);(2)△ACP最大面積是4.【解題分析】
(1)令y=0,得到關于x的一元二次方程﹣x2﹣x+4=0,解此方程即可求得結果;(2)先求出直線AC解析式,再作PD⊥AO交AC于D,設P(t,﹣t2﹣t+4),可表示出D點坐標,于是線段PD可用含t的代數(shù)式表示,所以S△ACP=PD×OA=PD×4=2PD,可得S△ACP關于t的函數(shù)關系式,繼而可求出△ACP面積的最大值.【題目詳解】(1)解:設y=0,則0=﹣x2﹣x+4∴x1=﹣4,x2=2∴A(﹣4,0),B(2,0)(2)作PD⊥AO交AC于D設AC解析式y(tǒng)=kx+b∴解得:∴AC解析式為y=x+4.設P(t,﹣t2﹣t+4)則D(t,t+4)∴PD=(﹣t2﹣t+4)﹣(t+4)=﹣t2﹣2t=﹣(t+2)2+2∴S△ACP=PD×4=﹣(t+2)2+4∴當t=﹣2時,△ACP最大面積4.【題目點撥】本題考查二次函數(shù)綜合,解題的關鍵是掌握待定系數(shù)法進行求解.18、(1);(2)當t=1時,矩形ABCD的周長有最大值,最大值為;(3)拋物線向右平移的距離是1個單位.【解題分析】
(1)由點E的坐標設拋物線的交點式,再把點D的坐標(2,1)代入計算可得;
(2)由拋物線的對稱性得BE=OA=t,據(jù)此知AB=10-2t,再由x=t時AD=,根據(jù)矩形的周長公式列出函數(shù)解析式,配方成頂點式即可得;
(3)由t=2得出點A、B、C、D及對角線交點P的坐標,由直線GH平分矩形的面積知直線GH必過點P,根據(jù)AB∥CD知線段OD平移后得到的線段是GH,由線段OD的中點Q平移后的對應點是P知PQ是△OBD中位線,據(jù)此可得.【題目詳解】(1)設拋物線解析式為,當時,,點的坐標為,將點坐標代入解析式得,解得:,拋物線的函數(shù)表達式為;(2)由拋物線的對稱性得,,當時,,矩形的周長,,,,當時,矩形的周長有最大值,最大值為;(3)如圖,當時,點、、、的坐標分別為、、、,矩形對角線的交點的坐標為,直線平分矩形的面積,點是和的中點,,由平移知,是的中位線,,所以拋物線向右平移的距離是1個單位.【題目點撥】本題主要考查二次函數(shù)的綜合問題,解題的關鍵是掌握待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質及平移變換的性質等知識點.19、見解析【解題分析】
(1)可以把要證明相等的線段AE,CF放到△AEO,△BFO中考慮全等的條件,由兩個等腰直角三角形得AO=BO,OE=OF,再找夾角相等,這兩個夾角都是直角減去∠BOE的結果,所以相等,由此可以證明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以證明AE⊥BF【題目詳解】解:(1)證明:在△AEO與△BFO中,∵Rt△OAB與Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;(2)延長AE交BF于D,交OB于C,則∠BCD=∠ACO由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.20、(1)8cm(2)24cm2(3)60cm2(4)17s【解題分析】
(1)根據(jù)題意得:動點P在BC上運動的時間是4秒,又由動點的速度,可得BC的長;(2)由(1)可得BC的長,又由AB=6cm,可以計算出△ABP的面積,計算可得a的值;(3)分析圖形可得,甲中的圖形面積等于AB×AF-CD×DE,根據(jù)圖象求出CD和DE的長,代入數(shù)據(jù)計算可得答案,(4)計算BC+CD+DE+EF+FA的長度,又由P的速度,計算可得b的值.【題目詳解】(1)由圖象知,當t由0增大到4時,點P由BC,∴BC==4×2=8(㎝);(2)a=S△ABC=×6×8=24(㎝2);(3)同理,由圖象知CD=4㎝,DE=6㎝,則EF=2㎝,AF=14㎝∴圖1中的圖象面積為6×14-4×6=60㎝2;(4)圖1中的多邊形的周長為(14+6)×2=40㎝b=(40-6)÷2=17秒.21、(1)證明見解析;(2)DE=CE,理由見解析;(3).【解題分析】試題分析:(1)證明△ABE∽△ACD,從而得出結論;(2)先證明∠CDE=∠ACD,從而得出結論;(3)解直角三角形示得.試題解析:(1)∵∠ABE
=∠ACD,∠A=∠A,∴△ABE∽△ACD,∴;(2)∵,∴,又∵∠A=∠A,∴△ADE∽△ACB,∴∠AED
=∠ABC,∵∠AED
=∠ACD+∠CDE,∠ABC=∠ABE+∠CBE,∴∠ACD+∠CDE=∠ABE+∠CBE,∵∠ABE
=∠ACD,∴∠CDE=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CDE=∠ABE=∠ACD,∴DE=CE;(3)∵CD⊥AB,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=∠CDE+∠ADE=90°,∵∠ABE
=∠ACD,∠CDE=∠ACD,∴∠A=∠ADE,∠BEC=∠ABE+∠A=∠A+∠ACD=90°,∴AE=DE,BE⊥AC,∵DE=CE,∴AE=DE=CE,∴AB=BC,∵AD=2,BD=3,∴BC=AB=AD+BD=5,在Rt△BDC中,,在Rt△ADC中,,∴,∵∠ADC=∠FEC=90°,∴,∴.22、(1);(2)的長為;(1)存在,畫出點P的位置如圖1見解析,的最小值為
.【解題分析】
(1)根據(jù)勾股定理解答即可;(2)設AE=x,根據(jù)全等三角形的性質和勾股定理解答即可;(1)延長CB到點G,使BG=BC,連接FG,交BE于點P,連接PC,利用相似三角形的判定和性質解答即可.【題目詳解】(1)∵矩形ABCD,∴∠DAB=90°,AD=BC=1.在Rt△ADB中,DB.故答案為5;(2)設AE=x.∵AB=4,∴BE=4﹣x,在矩形ABCD中,根據(jù)折疊的性質知:Rt△FDE≌Rt△ADE,∴FE=AE=x,F(xiàn)D=AD=BC=1,∴BF=BD﹣FD=5﹣1=2.在Rt△BEF中,根據(jù)勾股定理,得FE2+BF2=BE2,即x2+4=(4﹣x)2,解得:x,∴AE的長為;(1)存在,如圖1,延長CB到點G,使BG=BC,連接FG,交BE于點P,連接PC,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 應對2024年經濟法考試教學課件全新改版
- 傳統(tǒng)文化傳承與創(chuàng)新:《陳情表》公開課
- 人教部編版《道德與法治》二年級上冊第1課《假期有收獲》精美課件(第1課時)
- 物業(yè)老舊小區(qū)安裝電梯后費用分擔協(xié)議模板
- 仲裁協(xié)議(課件備課)
- 2024年BIM工程師技能提升培訓課件
- 教學創(chuàng)新之路:2024年級3dmax教案發(fā)展
- 2024年工程制圖教案:未來教學模式探索
- 2故宮課件:2024年青少年歷史文化教育平臺
- 2024年教育課件展:0以內加減法教學新思路
- 電力工程施工售后保障方案
- 2024年小學心理咨詢室管理制度(五篇)
- 第16講 國家出路的探索與挽救民族危亡的斗爭 課件高三統(tǒng)編版(2019)必修中外歷史綱要上一輪復習
- 機器學習 課件 第10、11章 人工神經網絡、強化學習
- 北京市人民大學附屬中學2025屆高二生物第一學期期末學業(yè)水平測試試題含解析
- 書籍小兵張嘎課件
- 氫氣中鹵化物、甲酸的測定 離子色譜法-編制說明
- 2024秋期國家開放大學專科《機械制圖》一平臺在線形考(形成性任務四)試題及答案
- 2024年黑龍江哈爾濱市通河縣所屬事業(yè)單位招聘74人(第二批)易考易錯模擬試題(共500題)試卷后附參考答案
- 私募基金管理人-廉潔從業(yè)管理準則
- 房地產估價機構內部管理制度
評論
0/150
提交評論