版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖北省黃岡市黃州區(qū)啟黃中學(xué)2024屆中考猜題數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知直線a∥b∥c,直線m,n與a,b,c分別交于點A,C,E,B,D,F(xiàn),若AC=4,CE=6,BD=3,則DF的值是()A.4 B.4.5 C.5 D.5.52.點A(4,3)經(jīng)過某種圖形變化后得到點B(-3,4),這種圖形變化可以是()A.關(guān)于x軸對稱 B.關(guān)于y軸對稱C.繞原點逆時針旋轉(zhuǎn) D.繞原點順時針旋轉(zhuǎn)3.如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D,則圖中相似三角形共有()A.1對 B.2對 C.3對 D.4對4.對于反比例函數(shù),下列說法不正確的是()A.點(﹣2,﹣1)在它的圖象上 B.它的圖象在第一、三象限C.當(dāng)x>0時,y隨x的增大而增大 D.當(dāng)x<0時,y隨x的增大而減小5.某車間有27名工人,生產(chǎn)某種由一個螺栓套兩個螺母的產(chǎn)品,每人每天生產(chǎn)螺母16個或螺栓22個,若分配x名工人生產(chǎn)螺栓,其他工人生產(chǎn)螺母,恰好使每天生產(chǎn)的螺栓和螺母配套,則下面所列方程中正確的是()A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)6.如圖,正方形ABCD中,AB=6,G是BC的中點.將△ABG沿AG對折至△AFG,延長GF交DC于點E,則DE的長是()A.1 B.1.5 C.2 D.2.57.某單位組織職工開展植樹活動,植樹量與人數(shù)之間關(guān)系如圖,下列說法不正確的是()A.參加本次植樹活動共有30人 B.每人植樹量的眾數(shù)是4棵C.每人植樹量的中位數(shù)是5棵 D.每人植樹量的平均數(shù)是5棵8.如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=1.若把矩形OABC繞著點O逆時針旋轉(zhuǎn),使點A恰好落在BC邊上的A1處,則點C的對應(yīng)點C1的坐標(biāo)為()A.(﹣) B.(﹣) C.(﹣) D.(﹣)9.若⊙O的半徑為5cm,OA=4cm,則點A與⊙O的位置關(guān)系是()A.點A在⊙O內(nèi) B.點A在⊙O上 C.點A在⊙O外 D.內(nèi)含10.某幾何體由若干個大小相同的小正方體搭成,其主視圖與左視圖如圖所示,則搭成這個幾何體的小正方體最少有()A.4個 B.5個 C.6個 D.7個二、填空題(共7小題,每小題3分,滿分21分)11.計算:=_____________.12.如圖,在平面直角坐標(biāo)系中,已知點A(1,1),以點O為旋轉(zhuǎn)中心,將點A逆時針旋轉(zhuǎn)到點B的位置,則的長為_____.13.如圖,在邊長為1的小正方形網(wǎng)格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點O,則tan∠AOD=________.14.分解因式:mx2﹣4m=_____.15.如圖,已知O為△ABC內(nèi)一點,點D、E分別在邊AB和AC上,且,DE∥BC,設(shè)、,那么______(用、表示).16.如圖,已知⊙P的半徑為2,圓心P在拋物線y=x2﹣1上運動,當(dāng)⊙P與x軸相切時,圓心P的坐標(biāo)為_____.17.如圖,半徑為3的⊙O與Rt△AOB的斜邊AB切于點D,交OB于點C,連接CD交直線OA于點E,若∠B=30°,則線段AE的長為.三、解答題(共7小題,滿分69分)18.(10分)已知是上一點,.如圖①,過點作的切線,與的延長線交于點,求的大小及的長;如圖②,為上一點,延長線與交于點,若,求的大小及的長.19.(5分)如圖,已知□ABCD的面積為S,點P、Q時是?ABCD對角線BD的三等分點,延長AQ、AP,分別交BC,CD于點E,F(xiàn),連結(jié)EF。甲,乙兩位同學(xué)對條件進(jìn)行分析后,甲得到結(jié)論①:“E是BC中點”.乙得到結(jié)論②:“四邊形QEFP的面積為S”。請判斷甲乙兩位同學(xué)的結(jié)論是否正確,并說明理由.20.(8分)(問題發(fā)現(xiàn))(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關(guān)系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60°,得到正方形AB'C'D',請直接寫出BD'平方的值.21.(10分)頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經(jīng)過點C,交x軸于E(4,0).求出拋物線的解析式;如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設(shè)點M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應(yīng)點F恰好落在y軸上時,請直接寫出點P的坐標(biāo).22.(10分)如圖,△ABC中,∠A=90°,AB=AC=4,D是BC邊上一點,將點D繞點A逆時針旋轉(zhuǎn)60°得到點E,連接CE.(1)當(dāng)點E在BC邊上時,畫出圖形并求出∠BAD的度數(shù);(2)當(dāng)△CDE為等腰三角形時,求∠BAD的度數(shù);(3)在點D的運動過程中,求CE的最小值.(參考數(shù)值:sin75°=,cos75°=,tan75°=)23.(12分)山西特產(chǎn)專賣店銷售核桃,其進(jìn)價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:每千克核桃應(yīng)降價多少元?在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的幾折出售?24.(14分)我省有關(guān)部門要求各中小學(xué)要把“陽光體育”寫入課表,為了響應(yīng)這一號召,某校圍繞著“你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學(xué)生進(jìn)行了隨機抽樣調(diào)查,從而得到一組數(shù)據(jù),如圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題:該校對多少名學(xué)生進(jìn)行了抽樣調(diào)查?本次抽樣調(diào)查中,最喜歡足球活動的有多少人?占被調(diào)查人數(shù)的百分比是多少?若該校九年級共有400名學(xué)生,圖2是根據(jù)各年級學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計圖,請你估計全校學(xué)生中最喜歡籃球活動的人數(shù)約為多少?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】試題分析:根據(jù)平行線分線段成比例可得,然后根據(jù)AC=1,CE=6,BD=3,可代入求解DF=1.2.故選B考點:平行線分線段成比例2、C【解題分析】分析:根據(jù)旋轉(zhuǎn)的定義得到即可.詳解:因為點A(4,3)經(jīng)過某種圖形變化后得到點B(-3,4),所以點A繞原點逆時針旋轉(zhuǎn)90°得到點B,故選C.點睛:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩個圖形全等,對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.3、C【解題分析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三對相似三角形.故選C.4、C【解題分析】
由題意分析可知,一個點在函數(shù)圖像上則代入該點必定滿足該函數(shù)解析式,點(-2,-1)代入可得,x=-2時,y=-1,所以該點在函數(shù)圖象上,A正確;因為2大于0所以該函數(shù)圖象在第一,三象限,所以B正確;C中,因為2大于0,所以該函數(shù)在x>0時,y隨x的增大而減小,所以C錯誤;D中,當(dāng)x<0時,y隨x的增大而減小,正確,故選C.考點:反比例函數(shù)【題目點撥】本題屬于對反比例函數(shù)的基本性質(zhì)以及反比例函數(shù)的在各個象限單調(diào)性的變化5、D【解題分析】設(shè)分配x名工人生產(chǎn)螺栓,則(27-x)人生產(chǎn)螺母,根據(jù)一個螺栓要配兩個螺母可得方程2×22x=16(27-x),故選D.6、C【解題分析】
連接AE,根據(jù)翻折變換的性質(zhì)和正方形的性質(zhì)可證Rt△AFE≌Rt△ADE,在直角△ECG中,根據(jù)勾股定理求出DE的長.【題目詳解】連接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折疊的性質(zhì)得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,設(shè)DE=FE=x,則CG=3,EC=6?x.在直角△ECG中,根據(jù)勾股定理,得:(6?x)2+9=(x+3)2,解得x=2.則DE=2.【題目點撥】熟練掌握翻折變換、正方形的性質(zhì)、全等三角形的判定與性質(zhì)是本題的解題關(guān)鍵.7、D【解題分析】試題解析:A、∵4+10+8+6+2=30(人),∴參加本次植樹活動共有30人,結(jié)論A正確;B、∵10>8>6>4>2,∴每人植樹量的眾數(shù)是4棵,結(jié)論B正確;C、∵共有30個數(shù),第15、16個數(shù)為5,∴每人植樹量的中位數(shù)是5棵,結(jié)論C正確;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植樹量的平均數(shù)約是4.73棵,結(jié)論D不正確.故選D.考點:1.條形統(tǒng)計圖;2.加權(quán)平均數(shù);3.中位數(shù);4.眾數(shù).8、A【解題分析】
直接利用相似三角形的判定與性質(zhì)得出△ONC1三邊關(guān)系,再利用勾股定理得出答案.【題目詳解】過點C1作C1N⊥x軸于點N,過點A1作A1M⊥x軸于點M,由題意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,則△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴設(shè)NO=1x,則NC1=4x,OC1=1,則(1x)2+(4x)2=9,解得:x=±(負(fù)數(shù)舍去),則NO=,NC1=,故點C的對應(yīng)點C1的坐標(biāo)為:(-,).故選A.【題目點撥】此題主要考查了矩形的性質(zhì)以及勾股定理等知識,正確得出△A1OM∽△OC1N是解題關(guān)鍵.9、A【解題分析】
直接利用點與圓的位置關(guān)系進(jìn)而得出答案.【題目詳解】解:∵⊙O的半徑為5cm,OA=4cm,∴點A與⊙O的位置關(guān)系是:點A在⊙O內(nèi).故選A.【題目點撥】此題主要考查了點與圓的位置關(guān)系,正確①點P在圓外?d>r,②點P在圓上?d=r,③點P在圓內(nèi)?d<r是解題關(guān)鍵.10、B【解題分析】
由主視圖和左視圖確定俯視圖的形狀,再判斷最少的正方體的個數(shù).【題目詳解】由主視圖和左視圖可確定所需正方體個數(shù)最少時俯視圖(數(shù)字為該位置小正方體的個數(shù))為:則搭成這個幾何體的小正方體最少有5個,故選B.【題目點撥】本題考查了由三視圖判斷幾何體,根據(jù)主視圖和左視圖畫出所需正方體個數(shù)最少的俯視圖是關(guān)鍵.【題目詳解】請在此輸入詳解!【題目點撥】請在此輸入點睛!二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】分析:按單項式乘以多項式的法則將括號去掉,在合并同類項即可.詳解:原式=.故答案為:.點睛:熟記整式乘法和加減法的相關(guān)運算法則是正確解答這類題的關(guān)鍵.12、.【解題分析】
由點A(1,1),可得OA的長,點A在第一象限的角平分線上,可得∠AOB=45°,,再根據(jù)弧長公式計算即可.【題目詳解】∵A(1,1),∴OA=,點A在第一象限的角平分線上,∵以點O為旋轉(zhuǎn)中心,將點A逆時針旋轉(zhuǎn)到點B的位置,∴∠AOB=45°,∴的長為=,故答案為:.【題目點撥】本題考查坐標(biāo)與圖形變化——旋轉(zhuǎn),弧長公式,熟練掌握旋轉(zhuǎn)的性質(zhì)以及弧長公式是解題的關(guān)鍵.本題中求出OA=以及∠AOB=45°也是解題的關(guān)鍵.13、1【解題分析】
首先連接BE,由題意易得BF=CF,△ACO∽△BKO,然后由相似三角形的對應(yīng)邊成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,繼而求得答案.【題目詳解】如圖,連接BE,∵四邊形BCEK是正方形,∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,∴BF=CF,根據(jù)題意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:1,∴KO=OF=CF=BF,在Rt△PBF中,tan∠BOF==1,∵∠AOD=∠BOF,∴tan∠AOD=1.故答案為1【題目點撥】此題考查了相似三角形的判定與性質(zhì),三角函數(shù)的定義.此題難度適中,解題的關(guān)鍵是準(zhǔn)確作出輔助線,注意轉(zhuǎn)化思想與數(shù)形結(jié)合思想的應(yīng)用.14、m(x+2)(x﹣2)【解題分析】
提取公因式法和公式法相結(jié)合因式分解即可.【題目詳解】原式故答案為【題目點撥】本題主要考查因式分解,熟練掌握提取公因式法和公式法是解題的關(guān)鍵.分解一定要徹底.15、【解題分析】
根據(jù),DE∥BC,結(jié)合平行線分線段成比例來求.【題目詳解】∵,DE∥BC,∴,∴==.∵,∴∴.故答案為:.【題目點撥】本題考查的知識點是平面向量,解題的關(guān)鍵是熟練的掌握平面向量.16、(,1)或(﹣,1)【解題分析】
根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點P的縱坐標(biāo)是1或-1.將P的縱坐標(biāo)代入函數(shù)解析式,求P點坐標(biāo)即可【題目詳解】根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點P的縱坐標(biāo)是1或-1.當(dāng)y=1時,x1-1=1,解得x=±當(dāng)y=-1時,x1-1=-1,方程無解故P點的坐標(biāo)為()或(-)【題目點撥】此題注意應(yīng)考慮兩種情況.熟悉直線和圓的位置關(guān)系應(yīng)滿足的數(shù)量關(guān)系是解題的關(guān)鍵.17、【解題分析】
要求AE的長,只要求出OA和OE的長即可,要求OA的長可以根據(jù)∠B=30°和OB的長求得,OE可以根據(jù)∠OCE和OC的長求得.【題目詳解】解:連接OD,如圖所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BOtan30°=6×=2,∵∠COE=90°,OC=3,∴OE=OCtan60°=3×=3,∴AE=OE﹣OA=3-2=,【點晴】切線的性質(zhì)三、解答題(共7小題,滿分69分)18、(Ⅰ),PA=4;(Ⅱ),【解題分析】
(Ⅰ)易得△OAC是等邊三角形即∠AOC=60°,又由PC是○O的切線故PC⊥OC,即∠OCP=90°可得∠P的度數(shù),由OC=4可得PA的長度(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,易得∠APC=45°;過點C作CD⊥AB于點D,易得AD=AO=CO,在Rt△DOC中易得CD的長,即可求解【題目詳解】解:(Ⅰ)∵AB是○O的直徑,∴OA是○O的半徑.∵∠OAC=60°,OA=OC,∴△OAC是等邊三角形.∴∠AOC=60°.∵PC是○O的切線,OC為○O的半徑,∴PC⊥OC,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.∵AQ=CQ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.∴∠APC=∠AQC+∠QAO=45°.如圖②,過點C作CD⊥AB于點D.∵△OAC是等邊三角形,CD⊥AB于點D,∴∠DCO=30°,AD=AO=CO=2.∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=2∴PD=CD=2∴AP=AD+DP=2+2【題目點撥】此題主要考查圓的綜合應(yīng)用19、①結(jié)論一正確,理由見解析;②結(jié)論二正確,S四QEFP=S【解題分析】試題分析:(1)由已知條件易得△BEQ∽△DAQ,結(jié)合點Q是BD的三等分點可得BE:AD=BQ:DQ=1:2,再結(jié)合AD=BC即可得到BE:BC=1:2,從而可得點E是BC的中點,由此即可說明甲同學(xué)的結(jié)論①成立;(2)同(1)易證點F是CD的中點,由此可得EF∥BD,EF=BD,從而可得△CEF∽△CBD,則可得得到S△CEF=S△CBD=S平行四邊形ABCD=S,結(jié)合S四邊形AECF=S可得S△AEF=S,由QP=BD,EF=BD可得QP:EF=2:3,結(jié)合△AQP∽△AEF可得S△AQP=S△AEF=,由此可得S四邊形QEFP=S△AEF-S△AQP=S,從而說明乙的結(jié)論②正確;試題解析:甲和乙的結(jié)論都成立,理由如下:(1)∵在平行四邊形ABCD中,AD∥BC,∴△BEQ∽△DAQ,又∵點P、Q是線段BD的三等分點,∴BE:AD=BQ:DQ=1:2,∵AD=BC,∴BE:BC=1:2,∴點E是BC的中點,即結(jié)論①正確;(2)和(1)同理可得點F是CD的中點,∴EF∥BD,EF=BD,∴△CEF∽△CBD,∴S△CEF=S△CBD=S平行四邊形ABCD=S,∵S四邊形AECF=S△ACE+S△ACF=S平行四邊形ABCD=S,∴S△AEF=S四邊形AECF-S△CEF=S,∵EF∥BD,∴△AQP∽△AEF,又∵EF=BD,PQ=BD,∴QP:EF=2:3,∴S△AQP=S△AEF=,∴S四邊形QEFP=S△AEF-S△AQP=S-=S,即結(jié)論②正確.綜上所述,甲、乙兩位同學(xué)的結(jié)論都正確.20、(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解題分析】
(1)依據(jù)點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據(jù)Rt△ABC中,點F為斜邊BC的中點,可得AF=CF=BF,再根據(jù)等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,進(jìn)而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點A為旋轉(zhuǎn)中心將正方形ABCD逆時針旋轉(zhuǎn)60°,②以點A為旋轉(zhuǎn)中心將正方形ABCD順時針旋轉(zhuǎn)60°,分別依據(jù)旋轉(zhuǎn)的性質(zhì)以及勾股定理,即可得到結(jié)論.【題目詳解】(1)∵AB=AD,CB=CD,∴點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點F為斜邊BC的中點,∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四邊形AMFN是矩形;(3)BD′的平方為16+8或16﹣8.分兩種情況:①以點A為旋轉(zhuǎn)中心將正方形ABCD逆時針旋轉(zhuǎn)60°,如圖所示:過D'作D'E⊥AB,交BA的延長線于E,由旋轉(zhuǎn)可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以點A為旋轉(zhuǎn)中心將正方形ABCD順時針旋轉(zhuǎn)60°,如圖所示:過B作BF⊥AD'于F,旋轉(zhuǎn)可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8綜上所述,BD′平方的長度為16+8或16﹣8.【題目點撥】本題屬于四邊形綜合題,主要考查了正方形的性質(zhì),矩形的判定,旋轉(zhuǎn)的性質(zhì),線段垂直平分線的性質(zhì)以及勾股定理的綜合運用,解決問題的關(guān)鍵是作輔助線構(gòu)造直角三角形,依據(jù)勾股定理進(jìn)行計算求解.解題時注意:有三個角是直角的四邊形是矩形.21、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當(dāng)x=時,S有最大值,最大值為;(3)存在,點P的坐標(biāo)為(4,0)或(,0).【解題分析】
(1)將點E代入直線解析式中,可求出點C的坐標(biāo),將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標(biāo),設(shè)直線BD的解析式,代入點B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設(shè)點P的坐標(biāo),則點G的坐標(biāo)可表示,點H的坐標(biāo)可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【題目詳解】(1)將點E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線BD的解析式為y=kx+b,代入點B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點M的坐標(biāo)為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當(dāng)x=時,S有最大值,最大值為.(3)存在,如圖所示,設(shè)點P的坐標(biāo)為(t,0),則點G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對應(yīng)點為點F,F(xiàn)落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當(dāng)t2﹣t=t時,解得t1=0(舍),t2=4,此時點P(4,0).當(dāng)t2﹣t=﹣t時,解得t1=0(舍),t2=,此時點P(,0).綜上,點P的坐標(biāo)為(4,0)或(,0).【題目點撥】此題考查了待定系數(shù)法求函數(shù)解析式,點坐標(biāo)轉(zhuǎn)換為線段長度,幾何圖形與二次函數(shù)結(jié)合的問題,最后一問推出CG=HG為解題關(guān)鍵.22、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD=60°;(3)CE=.【解題分析】
(1)如圖1中,當(dāng)點E在BC上時.只要證明△BAD≌△CAE,即可推出∠BAD=∠CAE=(90°-60°)=15°;(2)分兩種情形求解①如圖2中,當(dāng)BD=DC時,易知AD=CD=DE,此時△DEC是等腰三角形.②如圖3中,當(dāng)CD=CE時,△DEC是等腰三角形;(3)如圖4中,當(dāng)E在BC上時,E記為E′,D記為D′,連接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先確定點E的運動軌跡是直線EE′(過點E與BC成60°角的直線上),可得EC的最小值即為線段CM的長(垂線段最短).【題目詳解】解:(1)如圖1中,當(dāng)點E在BC上時.
∵AD=AE,∠DAE=60°,∴△ADE是等邊三角形,∴∠ADE=∠AED=60°,∴∠ADB=∠AEC=120°,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,在△ABD和△ACE中,∠B=∠C,∠ADB=∠AEC,AB=AC,∴△BAD≌△CAE,∴∠BAD=∠CAE=(90°-60°)=15°.(2)①如圖2中,當(dāng)BD=DC時,易知AD=CD=DE,此時△DEC是等腰三角形,∠BAD=∠BAC=45°.
②如圖3中,當(dāng)CD=CE時,△DEC是等腰三角形.∵AD=AE,∴AC垂直平分線段DE,∴∠ACD=∠ACE=45°,∴∠DCE=90°,∴∠EDC=∠CED=45°,∵∠B=45°,∴∠EDC=∠B,∴DE∥AB,∴∠BAD=∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 林地修路合同范例
- 專項委托設(shè)計合同范例
- 單位物業(yè)托管合同范例
- 培訓(xùn)包過合同范例
- 安全專篇合同范例
- 銅仁幼兒師范高等??茖W(xué)?!稊?shù)據(jù)分析與挖掘》2023-2024學(xué)年第一學(xué)期期末試卷
- 陽江2024年廣東陽江市中醫(yī)醫(yī)院招聘核電項目組工作人員歷年參考題庫(頻考版)含答案解析
- 通化師范學(xué)院《工程經(jīng)濟學(xué)B》2023-2024學(xué)年第一學(xué)期期末試卷
- 鐵門關(guān)職業(yè)技術(shù)學(xué)院《化工設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)數(shù)學(xué)二年級第二學(xué)期口算計算共5055道題
- 建筑物放線驗線技術(shù)報告
- 年產(chǎn)2億袋板藍(lán)根顆粒劑車間工藝設(shè)計
- 下庫進(jìn)出水口攔污柵2X320KN雙向門機安裝方案
- 壓縮固結(jié)試驗
- 基數(shù)詞-與序數(shù)詞PPT優(yōu)秀課件
- 雙壁波紋管出廠合格證(共4頁)
- 學(xué)校校醫(yī)室常用藥物配備目錄及急救小常識
- API-6A-無損檢測作業(yè)指導(dǎo)書
- 屏式過熱器、高溫過熱器和高溫再熱器安裝作業(yè)指導(dǎo)書
- 電子血壓計現(xiàn)況及發(fā)展前景的研究
- 鋼結(jié)構(gòu)專用超薄型防火漆檢驗報告型式認(rèn)可證書
評論
0/150
提交評論