2024屆湖北省荊、荊、襄、宜四地七??荚嚶?lián)盟高一數(shù)學第一學期期末考試模擬試題含解析_第1頁
2024屆湖北省荊、荊、襄、宜四地七??荚嚶?lián)盟高一數(shù)學第一學期期末考試模擬試題含解析_第2頁
2024屆湖北省荊、荊、襄、宜四地七??荚嚶?lián)盟高一數(shù)學第一學期期末考試模擬試題含解析_第3頁
2024屆湖北省荊、荊、襄、宜四地七??荚嚶?lián)盟高一數(shù)學第一學期期末考試模擬試題含解析_第4頁
2024屆湖北省荊、荊、襄、宜四地七??荚嚶?lián)盟高一數(shù)學第一學期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆湖北省荊、荊、襄、宜四地七校考試聯(lián)盟高一數(shù)學第一學期期末考試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,共60分)1.設,其中、是正實數(shù),且,,則與的大小關系是()A. B.C. D.2.已知函數(shù),若關于的方程有四個不同的實數(shù)解,且滿足,則下列結(jié)論正確的是()A. B.C. D.3.定義在上的奇函數(shù)滿足,且當時,,則()A. B.2C. D.4.不等式的解集為R,則a的取值范圍為()A. B.C. D.5.設函數(shù)f(x)=asinx+bcosx,其中a,b∈R,ab≠0,若f(x)≥f()對一切x∈R恒成立,則下列結(jié)論中正確的是()A.B.點是函數(shù)的一個對稱中心C.在上是增函數(shù)D.存在直線經(jīng)過點且與函數(shù)的圖象有無數(shù)多個交點6.高斯是德國著名的數(shù)學家,近代數(shù)學奠基者之一,享有“數(shù)學王子”的稱號,用其名字命名的“高斯函數(shù)”為:設,用表示不超過x的最大整數(shù),則稱為高斯函數(shù)例如:,,已知函數(shù),則函數(shù)的值域為()A. B.C.1, D.1,2,7.用斜二測畫法畫一個水平放置平面圖形的直觀圖為如圖所示的直角梯形,其中BC=AB=2,則原平面圖形的面積為()A. B.C. D.8.已知函數(shù)且,則函數(shù)恒過定點()A. B.C. D.9.關于函數(shù)有下述四個結(jié)論:①是偶函數(shù);②在區(qū)間單調(diào)遞減;③在有個零點;④的最大值為.其中所有正確結(jié)論的編號是()A.①②④ B.②④C.①④ D.①③10.已知向量滿足,,則A.4 B.3C.2 D.011.直線(為實常數(shù))的傾斜角的大小是A B.C. D.12.有四個關于三角函數(shù)的命題::xR,+=:x、yR,sin(x-y)=sinx-siny:x=sinx:sinx=cosyx+y=其中假命題的是A., B.,C., D.,二、填空題(本大題共4小題,共20分)13.已知函數(shù)(1)當時,求的值域;(2)若,且,求的值;14.下列命題中正確的是__________.(填上所有正確命題的序號)①若,,則;②若,,則;③若,,則;④若,,,,則15.若存在常數(shù)k和b,使得函數(shù)和對其公共定義域上的任意實數(shù)x都滿足:和恒成立(或和恒成立),則稱此直線為和的“隔離直線”.已知函數(shù),,若函數(shù)和之間存在隔離直線,則實數(shù)b的取值范圍是______16.在中,,則等于______三、解答題(本大題共6小題,共70分)17.已知函數(shù),且(1)證明函數(shù)在上是增函數(shù)(2)求函數(shù)在區(qū)間上的最大值和最小值18.已知函數(shù)是定義在上奇函數(shù),且.(1)求,的值;(2)判斷在上的單調(diào)性,并用定義證明.19.如圖,是半徑為的半圓,為直徑,點為的中點,點和點為線段的三等分點,平面外一點滿足平面,=.(1)證明:;(2)求點到平面的距離.20.已知集合,(1)若,求;(2)若,求實數(shù)的取值范圍.21.設函數(shù).(1)當時,若對于,有恒成立,求取值范圍;(2)已知,若對于一切實數(shù)恒成立,并且存在,使得成立,求的最小值.22.已知,,且.(1)求實數(shù)a的值;(2)求.

參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】利用基本不等式結(jié)合二次函數(shù)的基本性質(zhì)可得出與的大小關系.【詳解】因為、是正實數(shù),且,則,,因此,.故選:B.2、D【解析】先作函數(shù)和的圖象,利用特殊值驗證A錯誤,再結(jié)合對數(shù)函數(shù)的性質(zhì)及二次函數(shù)的對稱性,計算判斷BCD的正誤即可.【詳解】作函數(shù)和的圖象,如圖所示:當時,,即,解得,此時,故A錯誤;結(jié)合圖象知,,當時,可知是方程,即的二根,故,,端點取不到,故BC錯誤;當時,,即,故,即,所以,故,即,所以,故D正確.故選:D.【點睛】方法點睛:已知函數(shù)有零點個數(shù)求參數(shù)值(取值范圍)或相關問題,常先分離參數(shù),再作圖象,將問題轉(zhuǎn)化成函數(shù)圖象的交點問題,利用數(shù)形結(jié)合法進行分析即可.3、D【解析】根據(jù)題意,由,分析可得,即可得函數(shù)的周期為4,則有,由函數(shù)的解析式以及奇偶性可得的值,即可得答案【詳解】解:根據(jù)題意,函數(shù)滿足,即,則函數(shù)的周期為4,所以又由函數(shù)為奇函數(shù),則,又由當,時,,則;則有;故選:【點睛】本題考查函數(shù)奇偶性、周期性的應用,注意分析得到函數(shù)的周期,屬于中檔題4、D【解析】對分成,兩種情況進行分類討論,結(jié)合判別式,求得的取值范圍.【詳解】當時,不等式化為,解集為,符合題意.當時,一元二次不等式對應一元二次方程的判別式,解得.綜上所述,的取值范圍是.故選:D【點睛】本小題主要考查二次項系數(shù)含有參數(shù)的一元二次不等式恒成立問題的求解,考查分類討論的數(shù)學思想方法,屬于基礎題.5、D【解析】根據(jù)f(x)≥f()對一切x∈R恒成立,那么x=取得最小值.結(jié)合周期判斷各選項即可【詳解】函數(shù)f(x)=asinx+bcosx=周期T=2π由題意x=取得最小值,a,b∈R,ab≠0,∴f()=0不正確;x=取得最小值,那么+=就是相鄰的對稱中心,∴點(,0)不是函數(shù)f(x)的一個對稱中心;因為x=取得最小值,根據(jù)正弦函數(shù)的性質(zhì)可知,f(x)在是減函數(shù)故選D【點睛】本題考查三角函數(shù)的性質(zhì)應用,排除法求解,考查轉(zhuǎn)化思想以及計算能力6、C【解析】由分式函數(shù)值域的求法得:,又,所以,由高斯函數(shù)定義的理解得:函數(shù)的值域為,得解【詳解】解:因為,所以,又,所以,由高斯函數(shù)的定義可得:函數(shù)的值域為,故選C【點睛】本題考查了分式函數(shù)值域的求法及對新定義的理解,屬中檔題7、C【解析】先求出直觀圖中,∠ADC=45°,AB=BC=2,,DC=4,即可得到原圖形是一個直角梯形和各個邊長及高,直接求面積即可.【詳解】直觀圖中,∠ADC=45°,AB=BC=2,DC⊥BC,∴,DC=4,∴原來的平面圖形上底長為2,下底為4,高為的直角梯形,∴該平面圖形面積為.故選:C8、D【解析】利用對數(shù)函數(shù)過定點求解.【詳解】令,解得,,所以函數(shù)恒過定點,故選:D9、A【解析】利用偶函數(shù)的定義可判斷出命題①的正誤;去絕對值,利用余弦函數(shù)的單調(diào)性可判斷出命題②的正誤;求出函數(shù)在區(qū)間上的零點個數(shù),并利用偶函數(shù)的性質(zhì)可判斷出命題③的正誤;由取最大值知,然后去絕對值,即可判斷出命題④的正誤.【詳解】對于命題①,函數(shù)的定義域為,且,則函數(shù)為偶函數(shù),命題①為真命題;對于命題②,當時,,則,此時,函數(shù)在區(qū)間上單調(diào)遞減,命題②正確;對于命題③,當時,,則,當時,,則,由偶函數(shù)的性質(zhì)可知,當時,,則函數(shù)在上有無數(shù)個零點,命題③錯誤;對于命題④,若函數(shù)取最大值時,,則,,當時,函數(shù)取最大值,命題④正確.因此,正確的命題序號為①②④.故選A.【點睛】本題考查與余弦函數(shù)基本性質(zhì)相關的命題真假的判斷,解題時要結(jié)合自變量的取值范圍去絕對值,結(jié)合余弦函數(shù)的基本性質(zhì)進行判斷,考查推理能力,屬于中等題.10、B【解析】分析:根據(jù)向量模的性質(zhì)以及向量乘法得結(jié)果.詳解:因所以選B.點睛:向量加減乘:11、D【解析】計算出直線的斜率,再結(jié)合傾斜角的取值范圍可求得該直線的傾斜角.【詳解】設直線傾斜角為,直線的斜率為,所以,,則.故選:D.【點睛】本題考查直線傾斜角的計算,一般要求出直線的斜率,考查計算能力,屬于基礎題.12、A【解析】故是假命題;令但故是假命題.二、填空題(本大題共4小題,共20分)13、(1)(2)【解析】(1)化簡函數(shù)解析式為,再利用余弦函數(shù)的性質(zhì)求函數(shù)的值域即可;(2)由已知得,利用同角之間的關系求得,再利用湊角公式及兩角差的余弦公式即可得解.【小問1詳解】,,利用余弦函數(shù)的性質(zhì)知,則【小問2詳解】,又,,則則14、③【解析】對于①,若,,則與可能異面、平行,故①錯誤;對于②,若,,則與可能平行、相交,故②錯誤;對于③,若,,則根據(jù)線面垂直的性質(zhì),可知,故③正確;對于④,根據(jù)面面平行的判定定理可知,還需添加相交,故④錯誤,故答案為③.【方法點晴】本題主要考查線面平行的判定與性質(zhì)、面面平行的性質(zhì)及線面垂直的性質(zhì),屬于難題.空間直線、平面平行或垂直等位置關系命題的真假判斷,常采用畫圖(尤其是畫長方體)、現(xiàn)實實物判斷法(如墻角、桌面等)、排除篩選法等;另外,若原命題不太容易判斷真假,可以考慮它的逆否命題,判斷它的逆否命題真假,原命題與逆否命題等價.15、【解析】由已知可得、恒成立,利用一元二次不等式的解法和基本不等式即可求得實數(shù)的取值范圍.【詳解】因為函數(shù)和之間存在隔離直線,所以當時,可得對任意的恒成立,則,即,所以;當時,對恒成立,即恒成立,又當時,,當且僅當即時等號成立,所以,綜上所述,實數(shù)的取值范圍是.故答案為:.16、【解析】由題;,又,代入得:考點:三角函數(shù)的公式變形能力及求值.三、解答題(本大題共6小題,共70分)17、(1)證明見解析;(2)的最大值為,最小值為.【解析】(1)根據(jù)求出,求得,再利用函數(shù)單調(diào)性的定義,即可證得結(jié)論;(2)根據(jù)在上的單調(diào)性,求在上的最值即可.【詳解】解:(1)因為,可得,解得,所以,任取,則,因為,所以,可得,即且,所以,即,所以在上是增函數(shù);(2)由(1)知,在上是增函數(shù),同理,任取時,,其中,故,即且,故,即,所以在上是減函數(shù),故在上是減函數(shù),在上是增函數(shù),又,,所以的最大值為,最小值為.【點睛】方法點睛:利用定義證明函數(shù)單調(diào)性方法:(1)取值:設是該區(qū)間內(nèi)的任意兩個值,且;(2)作差變形:即作差,即作差,并通過因式分解、配方、有理化等方法,向有利于判斷符號的方向變形;(3)定號:確定差的符號;(4)下結(jié)論:判斷,根據(jù)定義作出結(jié)論.即取值——作差——變形——定號——下結(jié)論.18、(1),;(2)證明見解析【解析】(1)根據(jù)已知條件,為奇函數(shù),利用可以求解出參數(shù)b,然后帶入到即可求解出參數(shù)a,得到函數(shù)解析式后再去驗證函數(shù)是否滿足在上的奇函數(shù)即可;(2)由第(1)問求解出的函數(shù)解析式,任取,,做差,通過因式分解判斷差值的符號,即可證得結(jié)論.【小問1詳解】由已知條件,函數(shù)是定義在上的奇函數(shù),所以,,所以,所以,檢驗,為奇函數(shù),滿足題意條件;所以,.小問2詳解】在上單調(diào)遞增,證明如下:任取,,;其中,,所以,故在上單調(diào)遞增.19、(1)證明見解析(2)【解析】本題主要考查直線與平面、點到面的距離,考查空間想象能力、推理論證能力(1)證明:∵點E為的中點,且為直徑∴,且∴∵FC∩AC=C∴BE⊥平面FBD∵FD∈平面FBD∴EB⊥FD(2)解:∵,且∴又∵∴∴∵∴∵∴∴∴點到平面的距離點評:立體幾何問題是高考中的熱點問題之一,從近幾年高考來看,立體幾何的考查的分值基本是20分左右,其中小題一兩題,解答題20、(1)(2)的取值范圍為【解析】(1)化簡集合A,B求出集合B的補集,再求即可;(2)由得到集合A是集合B的子集,分別討論集合A為空集和不是空集的情況,列出相應不等式,即可求解.【詳解】解:(1)當時,,,或,可得.(2)①當時,,此時,成立;②當時,若,有,得,由上知,若,則實數(shù)的取值范圍為.【點睛】本題主要考查了集合間的基本運算以及包含關系,注意集合A是集合B的子集時,不要忽略集合A為空集的情況,屬于中檔題.21、(1)(2)【解析】(1)據(jù)題意知,把不等式的恒成立轉(zhuǎn)化為恒成立,設,則,根據(jù)二次函數(shù)的性質(zhì),求得函數(shù)的最大致,即可求解.(2)由題意,根據(jù)二次函數(shù)的性質(zhì),求得,進而利用基本不等式,即可求解.【詳解】(1)據(jù)題意知,對于,有恒成立,即恒成立,因此,設,所以,函數(shù)在區(qū)間上是單調(diào)遞減的,,(2)由對于一切實數(shù)恒成立,可得,由存在,使得成立可得,,,當且

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論