版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆浙江省麗水四校數(shù)學高一上期末復習檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),則函數(shù)()A.有最小值 B.有最大值C.有最大值 D.沒有最值2.圓:與圓:的位置關系為()A.相交 B.相離C.外切 D.內(nèi)切3.已知,,都是實數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.下列函數(shù)中為奇函數(shù)的是()A. B.C. D.5.計算()A. B.C. D.6.已知點落在角的終邊上,且∈[0,2π),則的值為()A B.C. D.7.直線與圓交點的個數(shù)為A.2個 B.1個C.0個 D.不確定8.函數(shù)的圖象大致是()A. B.C. D.9.若正實數(shù),滿足,則的最小值為()A. B.C. D.10.定義在R上的偶函數(shù)滿足:對任意的,有,且,則不等式的解集是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.莖葉圖表示的是甲,乙兩人在5次綜合測評中的成績,記甲,乙的平均成績分別為a,b,則a,b的大小關系是______12.某地為踐行綠水青山就是金山銀山的理念,大力開展植樹造林.假設一片森林原來的面積為畝,計劃每年種植一些樹苗,且森林面積的年增長率相同,當面積是原來的倍時,所用時間是年(1)求森林面積的年增長率;(2)到今年為止,森林面積為原來的倍,則該地已經(jīng)植樹造林多少年?(3)為使森林面積至少達到畝,至少需要植樹造林多少年(精確到整數(shù))?(參考數(shù)據(jù):,)13.設函數(shù)(e為自然對數(shù)的底數(shù),a為常數(shù)),若為偶函數(shù),則實數(shù)______;若對,恒成立,則實數(shù)a的取值范圍是______14.夏季為旅游旺季,青島某酒店工作人員為了適時為游客準備食物,調(diào)整投入,減少浪費,他們統(tǒng)計了每個月的游客人數(shù),發(fā)現(xiàn)每年各個月份的游客人數(shù)會發(fā)生周期性的變化,并且有以下規(guī)律:①每年相同的月份,游客人數(shù)基本相同;②游客人數(shù)在2月份最少,在8月份最多,相差約200人;③2月份的游客約為60人,隨后逐月遞增直到8月份達到最多.則用一個正弦型三角函數(shù)描述一年中游客人數(shù)與月份之間關系為__________;需準備不少于210人的食物的月份數(shù)為__________.15.函數(shù)的定義域是___________,若在定義域上是單調(diào)遞增函數(shù),則實數(shù)的取值范圍是___________16.已知函數(shù),則的值是________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.主動降噪耳機工作的原理是:先通過微型麥克風采集周國的噪聲,然后降噪芯片生成與噪聲振幅相同、相位相反的聲波來抵消噪聲(如圖所示).已知某噪聲的聲波曲線,其中的振幅為2,且經(jīng)過點(1,-2)(1)求該噪聲聲波曲線的解析式以及降噪芯片生成的降噪聲波曲線的解析式;(2)證明:為定值18.某企業(yè)生產(chǎn),兩種產(chǎn)品,根據(jù)市場調(diào)查與預測,產(chǎn)品的利潤與投資成正比,其關系如圖(1)所示;產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖(2)所示(注:利潤和投資的單位均為萬元)圖(1)圖(2)(1)分別求,兩種產(chǎn)品的利潤關于投資的函數(shù)解析式(2)已知該企業(yè)已籌集到18萬元資金,并將全部投入,兩種產(chǎn)品的生產(chǎn)①若平均投入兩種產(chǎn)品的生產(chǎn),可獲得多少利潤?②如果你是廠長,怎樣分配這18萬元投資,才能使該企業(yè)獲得最大利潤?其最大利潤為多少萬元?19.已知函數(shù)為二次函數(shù),不等式的解集是,且在區(qū)間上的最小值為-12(1)求的解析式;(2)設函數(shù)在上的最小值為,求的表達式20.已知函數(shù)的部分圖象如圖所示(1)求函數(shù)的解析式:(2)將函數(shù)的圖象上所有的點向右平移個單位,再將所得圖象上每一個點的橫坐標變?yōu)樵瓉淼?倍(縱坐標不變),得到函數(shù)的圖象①當時,求函數(shù)的值域;②若方程在上有三個不相等的實數(shù)根,求的值21.已知點,,.(1)若,求的值;(2)若,其中為坐標原點,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】換元法后用基本不等式進行求解.【詳解】令,則,因為,,故,當且僅當,即時等號成立,故函數(shù)有最大值,由對勾函數(shù)的性質(zhì)可得函數(shù),即有最小值.故選:B2、A【解析】根據(jù)圓心距以及圓的半徑確定正確選項.【詳解】圓:的圓心為,半徑為.圓:的圓心為,半徑為.,,所以兩圓相交.故選:A3、B【解析】利用充分、必要條件的定義,結合不等式的性質(zhì)判斷題設條件間的推出關系,即可知條件間的充分、必要關系.【詳解】當時,若時不成立;當時,則必有成立,∴“”是“”的必要不充分條件.故選:B4、D【解析】利用奇函數(shù)的定義逐個分析判斷【詳解】對于A,定義域為,因為,所以是偶函數(shù),所以A錯誤,對于B,定義域為,因為,且,所以是非奇非偶函數(shù),所以B錯誤,對于C,定義域為,因為定義域不關于原點對稱,所以是非奇非偶函數(shù),所以C錯誤,對于D,定義域為,因為,所以是奇函數(shù),所以D正確,故選:D5、A【解析】利用正切的誘導公式即可求解.【詳解】,故選:A.6、D【解析】由點的坐標可知是第四象限的角,再由可得的值【詳解】由知角是第四象限的角,∵,θ∈[0,2π),∴.故選:D【點睛】此題考查同角三角函數(shù)的關系,考查三角函數(shù)的定義,屬于基礎題7、A【解析】化為點斜式:,顯然直線過定點,且定點在圓內(nèi)∴直線與圓相交,故選A8、B【解析】根據(jù)函數(shù)的奇偶性和正負性,運用排除法進行判斷即可.【詳解】因為,所以函數(shù)是偶函數(shù),其圖象關于縱軸對稱,故排除C、D兩個選項;顯然,故排除A,故選:B9、B【解析】由基本不等式有,令,將已知等式轉化為關于的一元二次不等式,解不等式即可得答案.【詳解】解:由題意,正實數(shù)滿足,則,令,可得,即,解得,或(舍去),所以當且僅當時,取得最小值2,故選:B.10、C【解析】依題意可得在上單調(diào)遞減,根據(jù)偶函數(shù)的性質(zhì)可得在上單調(diào)遞增,再根據(jù),即可得到的大致圖像,結合圖像分類討論,即可求出不等式的解集;【詳解】解:因為函數(shù)滿足對任意的,有,即在上單調(diào)遞減,又是定義在R上的偶函數(shù),所以在上單調(diào)遞增,又,所以,函數(shù)的大致圖像可如下所示:所以當時,當或時,則不等式等價于或,解得或,即原不等式的解集為;故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】分別計算出甲,乙的平均分,從而可比較a,b的大小關系.【詳解】易知甲的平均分為,乙的平均分為,所以.故答案為:.12、(1);(2)5年;(3)17年.【解析】(1)設森林面積的年增長率為,則,解出,即可求解;(2)設該地已經(jīng)植樹造林年,則,解出的值,即可求解;(3)設為使森林面積至少達到畝,至少需要植樹造林年,則,再結合對數(shù)函數(shù)的公式,即可求解.【小問1詳解】解:設森林面積的年增長率為,則,解得【小問2詳解】解:設該地已經(jīng)植樹造林年,則,,解得,故該地已經(jīng)植樹造林5年【小問3詳解】解:設為使森林面積至少達到畝,至少需要植樹造林年,則,,,,即取17,故為使森林面積至少達到畝,至少需要植樹造林17年13、①.1②.【解析】第一空根據(jù)偶函數(shù)的定義求參數(shù),第二空為恒成立問題,參變分離后轉化成求函數(shù)最值【詳解】由,即,關于恒成立,故恒成立,等價于恒成立令,,,故a的取值范圍是故答案為:1,14、①.②.5【解析】設函數(shù)為,根據(jù)題意,即可求得函數(shù)的解析式,再根據(jù)題意得出不等式,即可求解.【詳解】設該函數(shù)為,根據(jù)條件①,可知這個函數(shù)的周期是12;由②可知,最小,最大,且,故該函數(shù)的振幅為100;由③可知,在上單調(diào)遞增,且,所以,根據(jù)上述分析,可得,解得,且,解得,又由當時,最小,當時,最大,可得,且,又因為,所以,所以游客人數(shù)與月份之間的關系式為,由條件可知,化簡得,可得,解得,因為,且,所以,即只有五個月份要準備不少于210人的食物.故答案為:;.15、①.##②.【解析】根據(jù)對數(shù)函數(shù)的定義域求出x的取值范圍即可;結合對數(shù)復合型函數(shù)的單調(diào)性與一次函數(shù)的單調(diào)性即可得出結果.【詳解】由題意知,,得,即函數(shù)的定義域為;又函數(shù)在定義域上單調(diào)增函數(shù),而函數(shù)在上單調(diào)遞減,所以函數(shù)為減函數(shù),故.故答案為:;16、-1【解析】利用分段函數(shù)的解析式,代入即可求解.【詳解】解:因為,則.故答案為:-1三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)首先根據(jù)振幅為2求出A,將點(1,-2)代入解析式即可解得;(2)由(1),結合誘導公式和兩角和差的余弦公式化簡即可證明.【詳解】(1)∵振幅為2,A>0,∴A=2,,將點(1,-2)代入得:,∵,∴,∴,∴,易知與關于x軸對稱,所以.(2)由(1).即定值為0.18、(1),;(2)當,兩種產(chǎn)品分別投入2萬元,16萬元時,可使該企業(yè)獲得最大利潤,最大利潤為萬元【解析】(1)設投資為萬元(),設,,根據(jù)函數(shù)的圖象,求得的值,即可得到函數(shù)的解析式;,(2)①由(1)求得,,即可得到總利潤.②設產(chǎn)品投入萬元,產(chǎn)品投入萬元,得到則,結合二次函數(shù)的圖象與性質(zhì),即可求解【詳解】(1)設投資為萬元(),,兩種產(chǎn)品所獲利潤分別為,萬元,由題意可設,,其中,是不為零的常數(shù)所以根據(jù)圖象可得,,,,所以,(2)①由(1)得,,所以總利潤為萬元②設產(chǎn)品投入萬元,產(chǎn)品投入萬元,該企業(yè)可獲總利潤為萬元,則,令,則,且,則,當時,,此時,當,兩種產(chǎn)品分別投入2萬元,16萬元時,可使該企業(yè)獲得最大利潤,最大利潤為萬元【點睛】本題主要考查了函數(shù)的實際應用問題,其中解答中能夠從圖象中準確地獲取信息,利用待定系數(shù)法求得函數(shù)的解析式,再結合二次函數(shù)的圖象與性質(zhì)是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題19、(1);(2).【解析】(1)根據(jù)不等式的解集是,令,然后由在區(qū)間上的最小值為-12,由求解.(2)由(1)知函數(shù)的對稱軸是,然后分,兩種討論求解.【詳解】(1)因為不等式的解集是,令,因為在區(qū)間上的最小值為-12,所以,解得,所以.(2)當,即時,,當,即時,所以.【點睛】方法點睛:(1)二次函數(shù)在閉區(qū)間上的最值主要有三種類型:軸定區(qū)間定、軸動區(qū)間定、軸定區(qū)間動,不論哪種類型,解決的關鍵是考查對稱軸與區(qū)間的關系,當含有參數(shù)時,要依據(jù)對稱軸與區(qū)間的關系進行分類討論.(2)二次函數(shù)的單調(diào)性問題則主要依據(jù)二次函數(shù)圖象的對稱軸進行分析討論求解20、(1);(2)①;②.【解析】(1)由圖象得A、B、,再代入點,求解可得函數(shù)的解析式;(2)①由已知得,由求得,繼而求得函數(shù)的值域;②令,,做出函數(shù)的圖象,設有三個不同的實數(shù)根,有,,繼而得,由此可得答案.【小問1詳解】解:由圖示得:,又,所以,所以,所以,又因為過點,所以,即,所以,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 作品編輯發(fā)行轉讓協(xié)議
- 2024版商標使用授權協(xié)議書
- 2024年寬帶無線接入網(wǎng)項目建議書
- 五年級數(shù)學(小數(shù)乘法)計算題專項練習及答案匯編
- 四年級數(shù)學(三位數(shù)乘兩位數(shù))計算題專項練習及答案
- 柳州產(chǎn)品采購合同范本
- 進貨款合同范本
- 延續(xù)工齡合同范本
- 房屋租賃收抵押金合同范本
- 蘭花購買合同范本
- 臨床路徑實施情況、存在問題及整改措施
- 數(shù)獨題目高級50題(后附答案)【最新】
- (完整word版)上海博物館文物術語中英文對照
- 問題線索辦理呈批表
- 調(diào)度自動化及通信技術監(jiān)督實施細則
- 學、練、評一體化課堂模式下賽的兩個問題與對策
- 陜西省尾礦資源綜合利用
- 磁懸浮列車(課堂PPT)
- 常見藥品配伍表
- 克勞斯瑪菲注塑機說明書(精華版)
- 柴油發(fā)電機組檢測報告樣本
評論
0/150
提交評論