廣東省深圳市羅湖區(qū)羅湖外國語學校2023年高一數(shù)學第一學期期末預測試題含解析_第1頁
廣東省深圳市羅湖區(qū)羅湖外國語學校2023年高一數(shù)學第一學期期末預測試題含解析_第2頁
廣東省深圳市羅湖區(qū)羅湖外國語學校2023年高一數(shù)學第一學期期末預測試題含解析_第3頁
廣東省深圳市羅湖區(qū)羅湖外國語學校2023年高一數(shù)學第一學期期末預測試題含解析_第4頁
廣東省深圳市羅湖區(qū)羅湖外國語學校2023年高一數(shù)學第一學期期末預測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省深圳市羅湖區(qū)羅湖外國語學校2023年高一數(shù)學第一學期期末預測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)是兩個不同的平面,是一條直線,以下命題正確的是A.若,則 B.若,則C.若,則 D.若,則2.將函數(shù)圖象向左平移個單位后與的圖象重合,則()A. B.C D.3.“,”是“”的()A.充分不必要條件 B.必要不充分條件C充要條件 D.既不充分也不必要條件4.如圖,的斜二測直觀圖為等腰,其中,則原的面積為()A.2 B.4C. D.5.將函數(shù)()的圖象向右平移個單位長度后,得到函數(shù)的圖象,若為偶函數(shù),則()A.5 B.C.4 D.6.在中,,則等于A. B.C. D.7.下列函數(shù)是奇函數(shù),且在上單調(diào)遞增的是()A. B.C. D.8.若直線與圓的兩個交點關(guān)于直線對稱,則,的直線分別為()A., B.,C., D.,9.已知冪函數(shù)過點,則在其定義域內(nèi)()A.為偶函數(shù) B.為奇函數(shù)C.有最大值 D.有最小值10.將函數(shù)圖象上所有點的橫坐標縮短為原來的倍(縱坐標不變),再向右平移個單位,得到函數(shù)的圖象,則函數(shù)的圖象的一條對稱軸為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知是銳角,且sin=,sin=_________.12.如圖,、、、分別是三棱柱的頂點或所在棱的中點,則表示直線與是異面直線的圖形有______.13.已知函數(shù)的圖象恒過定點,若點也在函數(shù)的圖象上,則_________14.已知函數(shù),則的單調(diào)遞增區(qū)間是______15.圓的半徑是,弧度數(shù)為3的圓心角所對扇形的面積等于___________16.已知函數(shù),實數(shù),滿足,且,若在上的最大值為2,則____三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)在上的最小值為(1)求的單調(diào)遞增區(qū)間;(2)當時,求最大值以及此時x的取值集合18.如圖,三棱柱中,側(cè)棱垂直底面,,,點是棱的中點(1)證明:平面平面;(2)求三棱錐的體積19.已知函數(shù),.(Ⅰ)求的最小正周期;(Ⅱ)求在區(qū)間上的最大值和最小值.20.如圖,三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC為正三角形,D為AC中點(1)求證:直線AB1∥平面BC1D;(2)求證:平面BC1D⊥平面ACC1A121.給出以下三個條件:①點和為函數(shù)圖象的兩個相鄰的對稱中心,且;②;③直線是函數(shù)圖象的一條對稱軸從這三個條件中任選兩個條件將下面題目補充完整,并根據(jù)要求解題已知函數(shù).滿足條件________與________(1)求函數(shù)的解析式;(2)把函數(shù)的圖象向右平移個單位長度,再將所得到的函數(shù)圖象上的所有點的橫坐標變?yōu)樵瓉肀叮v坐標不變),得到函數(shù)的圖象.當時,函數(shù)的值域為,求實數(shù)的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】對于A、B、D均可能出現(xiàn),而對于C是正確的2、C【解析】利用三角函數(shù)的圖象變換可求得函數(shù)的解析式.【詳解】由已知可得.故選:C.3、A【解析】根據(jù)充分條件和必要條件的定義判斷.【詳解】∵“,”可推出“”,“”不能推出“,”,例如,時,,∴“,”是“”充分不必要條件.故選:A4、D【解析】首先算出直觀圖面積,再根據(jù)平面圖形與直觀圖面積比為求解即可.【詳解】因為等腰是一平面圖形的直觀圖,直角邊,所以直角三角形的面積是.又因為平面圖形與直觀圖面積比為,所以原平面圖形的面積是.故選:D5、C【解析】先由函數(shù)圖象平移規(guī)律可得,再由為偶函數(shù),可得(),則(),再由可得出的值.【詳解】由題意可知,因為為偶函數(shù),所以(),則(),因為,所以.故選:C.6、C【解析】分析:利用兩角和的正切公式,求出的三角函數(shù)值,求出的大小,然后求出的值即可詳解:由,則,因為位三角形的內(nèi)角,所以,所以,故選C點睛:本題主要考查了兩角和的正切函數(shù)的應用,解答中注意公式的靈活運用以及三角形內(nèi)角定理的應用,著重考查了推理與計算能力7、D【解析】利用冪函數(shù)的單調(diào)性和奇函數(shù)的定義即可求解.【詳解】當時,冪函數(shù)為增函數(shù);當時,冪函數(shù)為減函數(shù),故在上單調(diào)遞減,、和在上單調(diào)遞增,從而A錯誤;由奇函數(shù)定義可知,和不是奇函數(shù),為奇函數(shù),從而BC錯誤,D正確.故選:D.8、A【解析】由圓的對稱性可得過圓的圓心且直線與直線垂直,從而可求出.【詳解】因為直線與圓的兩個交點關(guān)于直線對稱,故直線與直線垂直,且直線過圓心,所以,,所以,.故選:A【點睛】本題考查直線方程的求法,注意根據(jù)圓的對稱性來探求兩條直線的位置關(guān)系以及它們滿足的某些性質(zhì),本題屬于基礎(chǔ)題.9、A【解析】設(shè)冪函數(shù)為,代入點,得到,判斷函數(shù)的奇偶性和值域得到答案.【詳解】設(shè)冪函數(shù)為,代入點,即,定義域為,為偶函數(shù)且故選:【點睛】本題考查了冪函數(shù)的奇偶性和值域,意在考查學生對于函數(shù)性質(zhì)的綜合應用.10、C【解析】,所以,所以,所以是一條對稱軸故選C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由誘導公式可求解.【詳解】由,而.故答案為:12、②④【解析】圖①中,直線,圖②中面,圖③中,圖④中,面【詳解】解:根據(jù)題意,在①中,且,則四邊形是平行四邊形,有,不是異面直線;圖②中,、、三點共面,但面,因此直線與異面;在③中,、分別是所在棱的中點,所以且,故,必相交,不是異面直線;圖④中,、、共面,但面,與異面所以圖②④中與異面故答案為:②④.13、【解析】根據(jù)對數(shù)過定點可求得,代入構(gòu)造方程可求得結(jié)果.【詳解】,,,解得:.故答案為:.14、【解析】函數(shù)是由和復合而成,分別判斷兩個函數(shù)的單調(diào)性,根據(jù)復合函數(shù)的單調(diào)性同增異減即可求解.【詳解】函數(shù)是由和復合而成,因為為單調(diào)遞增函數(shù),對稱軸為,開口向上,所以在上單調(diào)遞減,在上單調(diào)遞增,所以在上單調(diào)遞減,在上單調(diào)遞增,所以的單調(diào)遞增區(qū)間為,故答案為:.15、【解析】根據(jù)扇形的面積公式,計算即可.【詳解】由扇形面積公式知,.【點睛】本題主要考查了扇形的面積公式,屬于容易題.16、4【解析】由題意結(jié)合函數(shù)的解析式分別求得a,b的值,然后求解的值即可.【詳解】繪制函數(shù)的圖像如圖所示,由題意結(jié)合函數(shù)圖像可知可知,則,據(jù)此可知函數(shù)在區(qū)間上的最大值為,解得,且,解得:,故.【點睛】本題主要考查函數(shù)圖像的應用,對數(shù)的運算法則等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)最大值為,此時x的取值集合為.【解析】(1)利用二倍角公式化簡函數(shù),再利用余弦函數(shù)性質(zhì)列式計算作答.(2)利用余弦函數(shù)性質(zhì)直接計算作答.【小問1詳解】依題意,,令,,解得,所以的單調(diào)遞增區(qū)間為.【小問2詳解】由(1)知,當時,,,解得,因此,,當,,即,時,取得最大值1,則取得最大值,所以的最大值為,此時x的取值集合為.18、(1)證明見解析;(2)【解析】(1)由題意得,,即可得到平面,從而得到⊥,再根據(jù),得到,證得平面,即可得證;(2)首先求出,利用勾股定理求出,即可求出,再根據(jù)錐體的體積公式計算可得【詳解】解:(1)證明:由題設(shè)知,,,平面,所以平面,又因為平面,所以因為,所以,即因為,平面,所以平面,又因為平面,所以平面平面(2)由,得,所以,所以,所以的面積,所以19、(1);(2),.【解析】(1)將函數(shù)化為的形式后可得最小正周期.(2)由,可得,將作為一個整體,結(jié)合圖象可得函數(shù)的最值試題解析:(1)∴的最小正周期.(2)∵,∴∴當,即時,,當,即時,.20、(1)見解析;(2)見解析.【解析】(1)連接交于點,連接,可得為中位線,,結(jié)合線面平行的判定定理,得平面;(2)由底面,得,正三角形中,中線,結(jié)合線面垂直的判定定理,得平面,最后由面面垂直的判定定理,證出平面平面.【詳解】(1)連接交于點,連接,則點為的中點為中點,得為中位線,,平面平面,∴直線平面;(2)證明:底面,,∵底面正三角形,是中點,平面,平面,∴平面平面【點睛】本題考查了直三棱柱的性質(zhì),線面平行的判定定理、面面垂直的判定定理,,屬于中檔題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面.21、(1)條件選擇見解析,;(2).【解析】(1)選①②,根據(jù)條件可求得函數(shù)的最小正周期,可求得的值,由②結(jié)合的取值范圍,可求得的值,即可得出函數(shù)的解析式;選①③,根據(jù)條件可求得函數(shù)的最小正周期,可求得的值,由③結(jié)合的取值范圍,可求得的值,即可得出函數(shù)的解析式;選②③,分別由②、③可得出關(guān)于的表達式,兩式作差可得出關(guān)于的等式,結(jié)合的取值范圍可求得的值,再由②結(jié)合的取值范圍,可求得的值,即可得出函數(shù)的解析式;(2)利用三角函數(shù)圖象變換求得,由,得,分析可知函數(shù),的值域為,由此可得出關(guān)于實數(shù)的不等式,由此可解得實數(shù)的取值范圍.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論