函數(shù)的單調(diào)性_第1頁
函數(shù)的單調(diào)性_第2頁
函數(shù)的單調(diào)性_第3頁
函數(shù)的單調(diào)性_第4頁
函數(shù)的單調(diào)性_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

函數(shù)的單調(diào)性2018.09.22函數(shù)的基本性質(zhì)

觀察下列各個(gè)函數(shù)的圖象,并說說它們分別反映了相應(yīng)函數(shù)的哪些變化規(guī)律:

1、觀察這三個(gè)圖象,你能說出圖象的特征嗎?2、隨x的增大,y的值有什么變化?1、從左至右圖象上升還是下降

? f(x)=xf(x)=x2x…-4-3-2-101234……16941014916…OxyOxyOxyOxyOxy1、從左至右圖象上升還是下降

? f(x)=x3、在區(qū)間

_____上,f(x)的值隨著x的增大而

_____.

f(x)=x22、在區(qū)間

________上,隨著x的增大,f(x)的值隨著

______.一.有關(guān)概念:如果對(duì)于屬于這個(gè)區(qū)間的自變量的任意稱函數(shù)f(x)在這個(gè)區(qū)間上是增函數(shù)。(如圖(1))2.如果對(duì)于屬于這個(gè)區(qū)間的自變量的任意稱函數(shù)f(x)在這個(gè)區(qū)間上是減函數(shù)。(如圖(2))一般地,對(duì)于給定區(qū)間上的函數(shù)f(x):Oxy圖(1)Oxy圖(2)1.增函數(shù)與減函數(shù)2、單調(diào)性、單調(diào)區(qū)間

如果函數(shù)y=f(x)在某個(gè)區(qū)間上是增函數(shù)或是減函數(shù),那么就說函數(shù)y=f(x)在這一區(qū)間具有(嚴(yán)格的)單調(diào)性,區(qū)間D叫做y=f(x)的單調(diào)區(qū)間.

3、對(duì)單調(diào)性概念的幾點(diǎn)理解:

1、函數(shù)的單調(diào)性是在定義域內(nèi)的某個(gè)區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì);2.必須是對(duì)于區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2;當(dāng)x1<x2時(shí),總有f(x1)<f(x2)

或f(x1)>f(x2),則分別是增函數(shù)和減函數(shù).例1

下圖是定義在閉區(qū)間[-5,5]上的函數(shù)的圖象,根據(jù)圖象說出的單調(diào)區(qū)間,以及在每一區(qū)間上,是增函數(shù)還是減函數(shù).-212345-23-3-4-5-1-112O解:根據(jù)函數(shù)圖象可知在區(qū)間[-2,1),[3,5]上是增函數(shù)。函數(shù)單調(diào)區(qū)間有[-5,-2),[-2,1),[1,3),[3,5],其中在區(qū)間[-5,-2),[1,3)上是減函數(shù),注意:函數(shù)的單調(diào)性是對(duì)某個(gè)區(qū)間而言的,對(duì)于單獨(dú)的一點(diǎn),它的函數(shù)值是唯一確定的常數(shù),不存在單調(diào)性問題。請(qǐng)結(jié)合圖象說出一次函數(shù)與二次函數(shù)的單調(diào)區(qū)間.二次函數(shù)y=ax2+bx+c(a≠0)在上是增函數(shù)在上是減函數(shù)在上是增函數(shù)在上是減函數(shù)在(-∞,+∞)上是減函數(shù)在(-∞,+∞)上是增函數(shù)一次函數(shù)y=kx+b(k≠0)yox當(dāng)k<0時(shí),yox當(dāng)k>0時(shí),yox當(dāng)a<0時(shí),yox當(dāng)a>0時(shí),例2:證明:函數(shù)在R上是單調(diào)減函數(shù).證:在R上任意取兩個(gè)值,且,

∵∴

即∴在R上是單調(diào)減函數(shù).取值作差變形定號(hào)判斷則1、任取x1,x2∈D,且x1<x2;2、作差f(x1)-f(x2),變形;3、定號(hào)(即判斷差f(x1)-f(x2)的正負(fù));4、下結(jié)論(即指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

二、利用定義證明函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性的一般步驟:OxyOxyOxy21yOx[例3].根據(jù)函數(shù)的圖象說出函數(shù)的單調(diào)性

例3、物理學(xué)中的玻意耳定律告訴我們,對(duì)于一定量的氣體,當(dāng)其體積V減小時(shí),壓強(qiáng)p將增大.試用函數(shù)的單調(diào)性證明之.思考?思考:畫出反比例函數(shù)的圖象.

1、這個(gè)函數(shù)的定義域I是什么?

2、它在定義域I上的單調(diào)性怎樣?證明你的結(jié)論.

三.課堂小結(jié):

3.函數(shù)的單調(diào)性的證明方法—定義法(四步)。

2.函數(shù)的單調(diào)性的找法—作圖,根據(jù)圖象找函數(shù)的單調(diào)區(qū)間。1.函數(shù)單調(diào)性的定義【練習(xí)】:

1、判斷函數(shù)f(x)=1/x在(-∞,0)上是增函數(shù)還是減函數(shù)?并證明你的結(jié)論.【想一想】:能否說函數(shù)f(x)=1/x在(-∞,+∞)

上是減函數(shù)?答:不能.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論